難點解析京改版數學9年級上冊期末試卷附參考答案詳解(培優(yōu))_第1頁
難點解析京改版數學9年級上冊期末試卷附參考答案詳解(培優(yōu))_第2頁
難點解析京改版數學9年級上冊期末試卷附參考答案詳解(培優(yōu))_第3頁
難點解析京改版數學9年級上冊期末試卷附參考答案詳解(培優(yōu))_第4頁
難點解析京改版數學9年級上冊期末試卷附參考答案詳解(培優(yōu))_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,PAB為⊙O的割線,且PA=AB=3,PO交⊙O于點C,若PC=2,則⊙O的半徑的長為()A. B. C. D.72、關于二次函數的最大值或最小值,下列說法正確的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值63、已知拋物線P:,將拋物線P繞原點旋轉180°得到拋物線,當時,在拋物線上任取一點M,設點M的縱坐標為t,若,則a的取值范圍是(

)A. B. C. D.4、如果?ABC的各邊長都擴大為原來的3倍,那么銳角A的正弦、余弦值是(

)A.都擴大為原來的3倍 B.都縮小為原來的C.沒有變化 D.不能確定5、古希臘數學家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數稱為“黃金分割”數,把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(

)A. B. C. D.6、如果,那么的結果是(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、下列四組圖形中,是相似圖形的是(

)A. B.C. D.2、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(

)A.B.C.若關于x的方程有實數根,則D.若和是拋物線上的兩點,則當時,3、如圖,在Rt△ABC中,,于點D,則下列結論正確的是(

)A. B.C. D.4、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構成的圖形記作C2,將C1和C2構成的圖形記作C3.關于圖形C3,給出的下列四個結論,正確的是(

)A.圖形C3恰好經過4個整點(橫、縱坐標均為整數的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π5、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(

)A. B.C. D.6、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.7、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數關系式是____________,自變量x的取值范圍是____________.2、已知拋物線與x軸的一個交點為,則代數式的值為______.3、在每個小正方形的邊長為1的網格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.4、如圖,在平面直角坐標系中,一條過原點的直線與反比例函數的圖象x相交于兩點,若,,則該反比例函數的表達式為______.5、一個橫斷面是拋物線的渡槽如圖所示,根據圖中所給的數據求出水面的寬度是____cm.6、若二次函數的頂點在x軸上,則__________.7、如圖,在RT△ABC中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當為直角三角形時,線段的長為________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.2、如圖,二次函數的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.3、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.4、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.5、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側).(1)求拋物線的頂點P的坐標(用含a的代數式表示);(2)橫、縱坐標都是整數的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內的整點個數;②當“W區(qū)域”內恰有2個整點時,結合函數圖象,直接寫出a的取值范圍.6、如圖,在平面直角坐標系中,直線與軸、軸分別交于、兩點,拋物線經過、兩點;(1)求拋物線的解析式;(2)點為軸上一點,點為直線上一點,過作交軸于點,當四邊形為菱形時,請直接寫出點坐標;(3)在(2)的條件下,且點在線段上時,將拋物線向上平移個單位,平移后的拋物線與直線交于點(點在第二象限),點為軸上一點,若,且符合條件的點恰好有2個,求的取值范圍.-參考答案-一、單選題1、A【解析】【分析】延長PO到E,延長線與圓O交于點E,連接EB,AC,根據四邊形ACEB為圓O的內接四邊形,利用圓內接四邊形的外角等于它的內對角得到一對角相等,再由公共角相等,利用兩對對應角相等的兩三角形相似,可得出三角形ACP與三角形EBP相似,由相似得比例,進而可求得答案.【詳解】延長PO到E,延長線與圓O交于點E,連接EB,AC,∵四邊形ACEB為圓O的內接四邊形,∴∠ACP=∠E,又∠P=∠P,∴△ACP∽△EBP,∴PA:PE=PC:PB,∴PA?PB=PC?PE,∵PA=AB=3,∴PB=6,又PC=2,∴3×6=2PE,∴PE=9,∴CE=9-2=7,∴半徑=3.5.【考點】此題考查了圓內接四邊形的性質,相似三角形的判定與性質,利用了轉化思想,其中作出如圖所示的輔助線是解本題的關鍵.2、D【解析】【分析】根據二次函數的解析式,得到a的值為2,圖象開口向上,函數有最小值,根據定點坐標(4,6),即可得出函數的最小值.【詳解】解:∵在二次函數中,a=2>0,頂點坐標為(4,6),∴函數有最小值為6.故選:D.【考點】本題主要考查了二次函數的最值問題,關鍵是根據二次函數的解析式確定a的符號和根據頂點坐標求出最值.3、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當x=1時,,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點旋轉180°得到拋物線,∴拋物線P與拋物線關于原點對稱,設點(x,y)在拋物線P’上,則點(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當時,在拋物線上任取一點M,設點M的縱坐標為t,若,即令,∴,解得:或,設,∵開口向下,且與x軸的兩個交點為(0,0),(4a,0),即當時,要恒成立,此時,∴當x=1時,即可,得:,解得:,又∵∴故選A【考點】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.4、C【解析】【分析】根據相似三角形的判定定理、正弦、余弦的概念解答.【詳解】三角形各邊長度都擴大為原來的3倍,∴得到的三角形與原三角形相似,∴銳角A的大小不變,∴銳角A的正弦、余弦值不變,故選:C.【考點】三角形的形狀沒有改變,邊的比值沒有發(fā)生變化.5、A【解析】【分析】作AF⊥BC,根據等腰三角形ABC的性質求出AF的長,再根據黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質、勾股定理的應用以及三角形的面積公式,求出DE和AF的長是解題的關鍵。6、B【解析】【分析】根據比例的性質即可得到結論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質,解本題的要點根據題意可設a,b的值,從而求出答案.二、多選題1、ABC【解析】【分析】根據相似圖形的定義,對選項進行一一分析,排除錯誤答案.【詳解】解:A、形狀相同,但大小不同,符合相似形的定義,故符合題意;B、形狀相同,但大小不同,符合相似形的定義,故符合題意;C、形狀相同,但大小不同,符合相似形的定義,故符合題意;D、形狀不相同,不符合相似形的定義,故不符合題意;故選:ABC.【考點】本題考查的是相似形的定義,結合圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.2、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數圖象與系數的關系,二次函數的性質,二次函數與一元二次方程的聯(lián)系,熟練掌握二次函數圖象性質是解題的關鍵.3、BC【解析】【分析】根據正切函數的定義即可一一判定.【詳解】解:,,,,,在中,,故選項A、D不正確;在中,,故選項B正確;在中,,,故選項C正確;故選:BC.【考點】本題考查了正切函數的定義和直角三角形的性質,熟練掌握和運用正切函數的定義和求法是解決本題的關鍵.4、ABD【解析】【分析】畫出圖象C3,以及以O為圓心,以1為半徑的圓,再作出⊙O內接正方形,根據圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數的圖象與幾何變換,數形結合是解題的關鍵.5、ACD【解析】【分析】根據垂徑定理和圓周角定理可以判斷A,根據圓周角定理可以判斷B,根據圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.6、ABD【解析】【分析】根據三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關鍵是熟練掌握三角形相似的判定方法.7、ABD【解析】【分析】根據相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.三、填空題1、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據矩形的面積=長×寬,得出S與x的函數關系式,并根據墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.2、2019【解析】【分析】先將點(m,0)代入函數解析式,然后求代數式的值即可得出結果.【詳解】解:將(m,0)代入函數解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數圖象上點的坐標特征及求代數式的值,解題的關鍵是將點(m,0)代入函數解析式得到有關m的代數式的值.3、5【解析】【分析】根據相似三角形的性質確定兩直角邊的比值為1:2,以及6×6網格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應用與設計、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是學會利用數形結合的思想解決問題,屬于中考填空題中的壓軸題.4、y=.【解析】【分析】由正比例函數與反比例函數的兩個交點關于原點對稱,可得m2-7=2,由點A在第三象限可求m的值,即可求點A坐標,代入解析式可求解.【詳解】解:∵一條過原點的直線與反比例函數的圖象相交于A、B兩點,∴點A與點B關于原點對稱,∴m2-7=2,∴m=±3,∵點A在第三象限,∴m<0,∴m=-3,∴點A(-3,-2),∵點A在反比例函數的圖象上,∴k=-3×(-2)=6,∴反比例函數的表達式為y=,故答案為:y=.【考點】本題考查了反比例函數與一次函數的交點問題,掌握正比例函數與反比例函數的兩個交點關于原點對稱是本題的關鍵.5、2【解析】【分析】首先建立平面直角坐標系,然后根據圖中數據確定點A和點B的坐標,從而利用待定系數法確定二次函數的解析式,然后求得C、D兩點的坐標,從而求得水面的寬度.【詳解】如圖建立直角坐標系.則點A的坐標為(-2,8),點B的坐標為(2,8),設拋物線的解析式為y=ax2,代入點A的坐標得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點】本題考查了二次函數的應用,解題的關鍵是從實際問題中整理出二次函數模型,并建立正確的平面直角坐標系.6、-2或【解析】【分析】根據二次函數一般式的頂點坐標公式表示出頂點,再根據頂點在x軸上,建立等量關系求解即可.【詳解】解:的頂點坐標為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數一般式的頂點坐標,掌握二次函數一般式的頂點坐標公式是解題關鍵.7、或【解析】【分析】(1)分別在、、中應用含角的直角三角形的性質以及勾股定理求得,,再根據垂直平分線的性質、等邊三角形的判定和性質、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據垂直平分線的性質、全等三角形的判定和性質、分線段成比例定理可證得,然后根據平行線的性質、相似三角形的判定和性質列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設,則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當時,連接、交于點,過點作于,如圖2:設,則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質和判定、含角的直角三角形的性質、勾股定理、全等三角形的判定和性質、平行線的判定和性質、相似三角形的判定和性質、等邊三角形的判定和性質等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數學思想.四、解答題1、(1)見解析;(2)2【解析】【分析】(1)由角平分線的定義可得∠DAG=∠BAF,再由∠ADE=∠B,即可證明△ADG∽△ABF;(2)由△ADG∽△ABF,可得,即可得到,則GF=AF-AG=2.【詳解】解:(1)∵AF平分∠BAC,∴∠DAG=∠BAF,∵∠ADE=∠B,∴△ADG∽△ABF;(2)∵△ADG∽△ABF,∴,∵,,∴,∴GF=AF-AG=2.【考點】本題主要考查了角平分線的定義,相似三角形的性質與判定,解題的關鍵在于能夠熟練掌握相似三角形的性質與判定條件.2、;有最大值;存在滿足條件的點,其坐標為或【解析】【分析】可設拋物線解析式為頂點式,由點坐標可求得拋物線的解析式,則可求得點坐標,利用待定系數法可求得直線解析式;設出點坐標,從而可表示出的長度,利用二次函數的性質可求得其最大值;過作軸,交于點,過和于,可設出點坐標,表示出的長度,由條件可證得為等腰直角三角形,則可得到關于點坐標的方程,可求得點坐標.【詳解】解:拋物線的頂點的坐標為,可設拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標為,可設直線解析式為,把點坐標代入可得,解得,直線解析式為;設點橫坐標為,則,,,當時,有最大值;如圖,過作軸交于點,交軸于點,作于,設,則,,是等腰直角三角形,,,當中邊上的高為時,即,,,當時,,方程無實數根,當時,解得或,或,綜上可知存在滿足條件的點,其坐標為或.【考點】本題為二次函數的綜合應用,涉及待定系數法、二次函數的性質、等腰直角三角形的性質及方程思想等知識.在中主要是待定系數法的考查,注意拋物線頂點式的應用,在中用點坐標表示出的長是解題的關鍵,在中構造等腰直角三角形求得的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.3、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,解直角三角形,正確尋找全等三角形或相似三角形解決問題,學會利用參數構建方程解決問題,是解題的關鍵.4、.【解析】【分析】先根據可判斷出,再根據相似三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論