版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省萊州市中考數學檢測卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、關于函數,下列說法:①函數的最小值為1;②函數圖象的對稱軸為直線x=3;③當x≥0時,y隨x的增大而增大;④當x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.42、平面直角坐標系中點關于原點對稱的點的坐標是()A. B. C. D.3、將一元二次方程化成(a,b為常數)的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,694、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形5、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形二、多選題(5小題,每小題3分,共計15分)1、關于拋物線y=(x﹣2)2+1,下列說法不正確的是(
)A.開口向上,頂點坐標(﹣2,1)
B.開口向下,對稱軸是直線x=2C.開口向下,頂點坐標(2,1)
D.當x>2時,函數值y隨x值的增大而增大2、下表時二次函數y=ax2+bx+c的x,y的部分對應值:…………則對于該函數的性質的判斷中正確的是()A.該二次函數有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數根分別位于﹣<x<0和2<x<之間D.當x>0時,函數值y隨x的增大而增大3、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.4、如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論中正確的結論是()A.△BO′A可以由△BOC繞點B逆時針旋轉60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+5、一個兩位數,十位數字與個位數字之和是5,把這個數的個位數字與十位數字對調后,所得的新的兩位數與原來的兩位數的乘積是736,原來的兩位數是(
)A.23 B.32 C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,I是△ABC的內心,∠B=60°,則∠AIC=_____.2、如圖,在等腰直角中,已知,將繞點逆時針旋轉60°,得到,連接,若,則________.3、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側面積是_____.4、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.5、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數為_______.四、簡答題(2小題,每小題10分,共計20分)1、(1)計算×cos45°﹣()﹣1+20180;(2)解方程組2、如圖,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的長.五、解答題(4小題,每小題10分,共計40分)1、如圖,已知弓形的長,弓高,(,并經過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.2、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=03、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.4、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當直線l在如圖①的位置時①請直接寫出與之間的數量關系______.②請直接寫出線段BH,EH,CH之間的數量關系______.(2)當直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數量關系并證明;(3)已知,在直線l旋轉過程中當時,請直接寫出EH的長.-參考答案-一、單選題1、B【解析】【分析】根據所給函數的頂點式得出函數圖象的性質從而判斷選項的正確性.【詳解】解:∵,∴該函數圖象開口向上,有最小值1,故①正確;函數圖象的對稱軸為直線,故②錯誤;當x≥0時,y隨x的增大而增大,故③正確;當x≤﹣3時,y隨x的增大而減小,當﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數的性質,解題的關鍵是能夠根據函數解析式分析出函數圖象的性質.2、B【分析】根據關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數,即可求解.【詳解】解:平面直角坐標系中點關于原點對稱的點的坐標是故選B【點睛】本題考查了關于原點對稱的點的特征,掌握關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數是解題的關鍵.3、A【解析】【分析】根據配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關鍵是配方:在二次項系數為1時,方程兩邊同時加上一次項系數一半的平方.4、A【分析】根據等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.5、D【分析】根據旋轉的性質推出相等的邊CE=CF,旋轉角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉的性質,掌握圖形旋轉前后的大小和形狀不變是解決問題的關鍵.二、多選題1、ABC【解析】【分析】由拋物線的解析式可求得其對稱軸、開口方向、頂點坐標,進一步可得出其增減性,可得出答案.【詳解】解:∵y=(x﹣2)2+1,∴拋物線開口向上,對稱軸為直線x=2,頂點坐標為(2,1),∴A、B、C不正確;當x>2時,y隨x的增大而增大,∴D正確,故選:ABC.【考點】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=中,對稱軸為直線x=h,頂點坐標為(h,k).2、BC【解析】【分析】由圖表可得二次函數y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數的性質,二次函數的最值,理解圖表中信息是本題的關鍵.3、ACD【解析】【分析】根據垂徑定理和圓周角定理可以判斷A,根據圓周角定理可以判斷B,根據圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.4、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質,旋轉的性質,勾股定理與勾股定理的逆定理的應用,全等三角形的判定與性質,熟練的做出正確的輔助線是解題的關鍵.5、AB【解析】【分析】設原來的兩位數十位上的數字為,則個位上的數字為,根據所得到的新兩位數與原來的兩位數的乘積為736,可列出方程求解即可.【詳解】解:設原來的兩位數十位上的數字為,則個位上的數字為,依題意可得:,解得:,,當時,,符合題意,原來的兩位數是23,當時,,符合題意,原來的兩位數是32,∴原來的兩位數是23或32,故選AB.【考點】本題考查了一元二次方程的應用,解題的關鍵是能正確用每一數位上的數字表示這個兩位數.三、填空題1、120°.【解析】【分析】根據三角形的內切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內切圓的圓心是三角形三個角的平分線的交點性質進行角度求解,熟練掌握,即可解題.2、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉的性質,等邊三角形,勾股定理,含的直角三角形等知識.解題的關鍵在于做輔助線構造直角三角形.3、60π【解析】【分析】利用圓錐的側面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側面積,勾股定理等知識,解題的關鍵是記住圓錐的側面積公式.4、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據三角形的三邊關系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質,全等三角形的判定和性質,勾股定理,關鍵是證點H是以AB為直徑的圓上一點.5、35°【分析】利用圓周角定理求出所求角度數即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關鍵是熟練掌握圓周角定理.四、簡答題1、(1)1;(2)【解析】【分析】(1)先化簡二次根式、代入特殊角的三角函數值、計算負整數指數冪和零指數冪,再計算乘法和加減運算可得;(2)利用加減消元法求解可得.【詳解】(1)原式=3-3+1=3﹣3+1=1;(2)①+②×3,得:10x=20,解得:x=2,把x=2代入①,得:6+y=1,解得:y=1,∴原方程組的解為.【考點】本題考查了實數的混合運算與二元一次方程組的解法.涉及了二次根式的化簡、特殊角的三角函數值、0次冪與負指數冪的運算、加減消元法解二元一次方程組,熟練掌握相關的運算法則以及解題方法是解題的關鍵.2、9【解析】【分析】過點A作AF⊥BC交BC于F,則由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,則在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,從而求出BC.【詳解】解:過點A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB?cos30°=,∴BC=2BF=2×=9.【考點】本題考查了等腰三角形的性質和解直角三角形,通過作輔助線構造直角三角形是解題關鍵五、解答題1、(1)見解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點即為圓心;(2)連接OA,根據勾股定理列出方程即可求解.(1)解:如圖所示,點O即是圓心;(2)解:連接OA,∵,并經過圓心O,,∴,∵,∴解得,,答:半徑為10.【點睛】本題考查了垂徑定理和確定圓心,解題關鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.2、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移項后,運用直接開平方法求解即可;(2)根據配方法解一元二次方程的步驟依次計算即可;(3)根據配方法解一元二次方程的步驟依次計算即可;(4)根據因式分解法求解即可.【詳解】解:(1)(x+1)2=64x+1=±8∴x1=7,x2=-9(2)x2﹣4x=-1x2﹣4x+4=-1+4(x-2)2=3x-2=±∴x1=2+,x2=2-(3)x2+2x=2x2+2x+1=2+1(x+1)2=3x+1=±∴x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0∴x1=-2,x2=4【考點】本題考查一元二次方程的求解,選擇適合的方法是解題關鍵.3、圖見解析.【分析】根據左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關鍵.4、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據BC=EC,得出∠ECG=∠BCG=,根據∠ECH=∠HCD=,可得CG=HG,根據勾股定理在Rt△GHC中,,根據GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據,分兩種情況,當∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據勾股定理HE=,當∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據30°直角三角形先證得出CF=,根據勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游合同附屬協(xié)議
- 旅游票務合同范本
- 日結兼職合同范本
- 舊房翻新合同范本
- 舊車翻新合同范本
- 暖氣管破損協(xié)議書
- 擺攤租地合同范本
- 合作建房產協(xié)議書
- 搭腳手架合同范本
- 合作建房子協(xié)議書
- 口腔正畸學課件
- 血常規(guī)報告單模板
- 物聯(lián)網就在身邊初識物聯(lián)網課件
- 路基拼接技術施工方案
- 宏觀經濟學PPT完整全套教學課件
- 陜09J02 屋面標準圖集
- 2023年上海清算登記托管結算試題試題
- 動車組受電弓故障分析及改進探討
- GB/T 41932-2022塑料斷裂韌性(GIC和KIC)的測定線彈性斷裂力學(LEFM)法
- 2023年浙江省大學生物理競賽試卷
- GB/T 2007.1-1987散裝礦產品取樣、制樣通則手工取樣方法
評論
0/150
提交評論