版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省丹陽(yáng)市中考數(shù)學(xué)通關(guān)考試題庫(kù)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或162、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(
)A.相交 B.相離 C.相切 D.無(wú)法判斷3、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過(guò)定點(diǎn)(1,1),且當(dāng)x<﹣1時(shí)y隨x的增大而減小,則a的取值范圍是()A. B. C. D.4、方程y2=-a有實(shí)數(shù)根的條件是(
)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實(shí)數(shù)5、如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是(
)A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、以圖①(以點(diǎn)O為圓心,半徑為1的半圓)作為“基本圖形”,分別經(jīng)歷如下變換能得到圖②的有(
)A.只要向右平移1個(gè)單位 B.先以直線為對(duì)稱軸進(jìn)行翻折,再向右平移1個(gè)單位C.先繞著點(diǎn)O旋轉(zhuǎn),再向右平移1個(gè)單位 D.繞著的中點(diǎn)旋轉(zhuǎn)即可2、如圖,AB為的直徑,,BC交于點(diǎn)D,AC交于點(diǎn)E,.下列結(jié)論正確的是(
)A. B.C. D.劣弧是劣弧的2倍3、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長(zhǎng)BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則4、如圖,在的網(wǎng)格中,點(diǎn),,,,均在網(wǎng)格的格點(diǎn)上,下面結(jié)論正確的有(
)A.點(diǎn)是的外心 B.點(diǎn)是的外心C.點(diǎn)是的外心 D.點(diǎn)是的外心5、下列條件中,不能確定一個(gè)圓的是(
)A.圓心與半徑 B.直徑C.平面上的三個(gè)已知點(diǎn) D.三角形的三個(gè)頂點(diǎn)第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,半圓O中,直徑AB=30,弦CD∥AB,長(zhǎng)為6π,則由與AC,AD圍成的陰影部分面積為_(kāi)______.2、菱形的一條對(duì)角線長(zhǎng)為8,其邊長(zhǎng)是方程x2-8x+15=0的一個(gè)根,則該菱形的面積為_(kāi)_______.3、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫(huà)半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是__________.4、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點(diǎn),將拋物線的圖象向上平移n(n是正整數(shù))個(gè)單位,使平移后的圖象與x軸沒(méi)有交點(diǎn),則n的最小值為_(kāi)____.5、圓錐的底面直徑是80cm,母線長(zhǎng)90cm.它的側(cè)面展開(kāi)圖的圓心角和圓錐的全面積依次是______.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.2、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過(guò)點(diǎn)A(2,6)和B(4,4),直線l經(jīng)過(guò)點(diǎn)B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達(dá)式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點(diǎn)R是直線1上的點(diǎn),如果△AOK與以O(shè),Q,R為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)R的縱坐標(biāo);(3)如圖2,正方形CDEF的頂點(diǎn)C是第二象限拋物線上的點(diǎn),點(diǎn)D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點(diǎn)分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點(diǎn)為N,且點(diǎn)N的縱坐標(biāo)是﹣1.求:①tan∠DCG的值;②點(diǎn)C的坐標(biāo).五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng).P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時(shí),PQ與⊙O相切?2、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個(gè)公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時(shí)的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對(duì)稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對(duì)稱軸上,求直線MN的函數(shù)表達(dá)式.3、如圖,等腰直角三角形,,,延長(zhǎng)至E,使得,以為直角邊作,,.(1)若以每秒1個(gè)單位的速度沿向右運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),直接寫(xiě)出在運(yùn)動(dòng)過(guò)程中與重疊部分面積S與運(yùn)動(dòng)時(shí)間t(單位:秒)的函數(shù)關(guān)系式;(2)點(diǎn)M為線段的中點(diǎn),當(dāng)(1)中的頂點(diǎn)E運(yùn)動(dòng)到點(diǎn)C后,將繞著點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)P是直線上一動(dòng)點(diǎn),連接,求的最小值.4、如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)原點(diǎn),且與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在第二象限上,且,則__.-參考答案-一、單選題1、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時(shí)方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時(shí)方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點(diǎn)】本題考查了一元二次方程的判別式和等腰三角形的性質(zhì),熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.2、A【解析】【分析】過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意開(kāi)口向上,且對(duì)稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過(guò)原點(diǎn),∵拋物線定點(diǎn)(1,1),且當(dāng)x<-1時(shí),y隨x的增大而減小,∴拋物線開(kāi)口向上,且對(duì)稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)平方的非負(fù)性可以得出﹣a≥0,再進(jìn)行整理即可.【詳解】解:∵方程y2=﹣a有實(shí)數(shù)根,∴﹣a≥0(平方具有非負(fù)性),∴a≤0;故選:A.【考點(diǎn)】此題考查了直接開(kāi)平方法解一元二次方程,關(guān)鍵是根據(jù)已知條件得出﹣a≥0.5、D【解析】【分析】利用旋轉(zhuǎn)的性質(zhì)得AC=CD,BC=EC,∠ACD=∠BCE,所以選項(xiàng)A、C不一定正確再根據(jù)等腰三角形的性質(zhì)即可得出,所以選項(xiàng)D正確;再根據(jù)∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判斷選項(xiàng)B不一定正確即可.【詳解】解:∵繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴選項(xiàng)A、C不一定正確,∴∠A=∠EBC,∴選項(xiàng)D正確.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴選項(xiàng)B不一定正確;故選D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).二、多選題1、BCD【解析】【分析】觀察兩個(gè)半圓的位置關(guān)系,再確定能否通過(guò)圖象變換得到,以及旋轉(zhuǎn)、平移的方法.【詳解】解:由圖可知,圖(1)先以直線AB為對(duì)稱軸進(jìn)行翻折,再向右平移1個(gè)單位,或先繞著點(diǎn)O旋轉(zhuǎn)180°,再向右平移1個(gè)單位,或繞著OB的中點(diǎn)旋轉(zhuǎn)180°即可得到圖(2)故選BCD【考點(diǎn)】本題考查了旋轉(zhuǎn)、軸對(duì)稱、平移的性質(zhì).關(guān)鍵是根據(jù)變換圖形的位置關(guān)系,確定變換規(guī)律.2、ABD【解析】【分析】根據(jù)圓周角定理,等邊對(duì)等角,等腰三角形的性質(zhì),直徑所對(duì)圓周角是直角等知識(shí)即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點(diǎn)D是的中點(diǎn),即,故選項(xiàng)正確;由選項(xiàng)可知是的平分線,∴,由圓周角定理知,,故選項(xiàng)正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項(xiàng)錯(cuò)誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項(xiàng)正確.綜上所述,正確的結(jié)論是:.故選:【考點(diǎn)】本題考查了圓周角定理,等邊對(duì)等角,等腰直角三角形的判定和性質(zhì),直徑所對(duì)圓周角是直角等知識(shí),解題關(guān)鍵是求出相應(yīng)角的度數(shù)3、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯(cuò)誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識(shí),證明△ABC是等腰直角三角形是解題的關(guān)鍵.4、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對(duì)四個(gè)選項(xiàng)進(jìn)行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,∴ABCD都是正確的.故選:ABCD.【考點(diǎn)】本題考查了三角形的外心和勾股定理的應(yīng)用,熟練掌握三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等是解決本題的關(guān)鍵.5、C【解析】【分析】根據(jù)不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,已知圓心和直徑所作的圓是唯一的進(jìn)行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個(gè)圓,不符合題意;B、已知直徑能確定一個(gè)圓,不符合題意;C、平面上的三個(gè)已知點(diǎn),不能確定一個(gè)圓,符合題意;D、已知三角形的三個(gè)頂點(diǎn),能確定一個(gè)圓,不符合題意;故選C.【考點(diǎn)】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.三、填空題1、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來(lái)求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長(zhǎng)為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點(diǎn)睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.2、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長(zhǎng)為5,利用勾股定理計(jì)算出菱形的另一條對(duì)角線長(zhǎng),然后根據(jù)菱形的面積公式計(jì)算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對(duì)角線長(zhǎng)為8,∴菱形的邊長(zhǎng)為5,∵菱形的另一條對(duì)角線長(zhǎng)=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點(diǎn)】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡(jiǎn)便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).3、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問(wèn)題,考查了運(yùn)動(dòng)路徑的問(wèn)題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.4、4【解析】【分析】通過(guò)A、B兩點(diǎn)得出對(duì)稱軸,再根據(jù)對(duì)稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對(duì)稱的兩點(diǎn),∴對(duì)稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(diǎn)(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點(diǎn)】本題考查二次函數(shù)對(duì)稱軸的性質(zhì),頂點(diǎn)式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對(duì)稱軸的性質(zhì)從題意中判斷出對(duì)稱軸.5、160°,5200【分析】由題意知,圓錐的展開(kāi)圖扇形的r半徑為90cm,弧長(zhǎng)l為.代入扇形弧長(zhǎng)公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開(kāi)圖扇形的r半徑為90cm,弧長(zhǎng)l為∵∴解得∵∴故答案為:160°,.【點(diǎn)睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運(yùn)用扇形的弧長(zhǎng)與面積公式進(jìn)行求解.難點(diǎn)在于求出公式中的未知量.四、簡(jiǎn)答題1、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問(wèn)題.(2)證明△AEP∽△DEC,可得,由此即可解決問(wèn)題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.2、(1)y=﹣;(2)點(diǎn)R的縱坐標(biāo)為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點(diǎn)C坐標(biāo)為(﹣1,3).【解析】【分析】(1)將點(diǎn)A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點(diǎn)R的縱坐標(biāo)為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點(diǎn)C在拋物線上,設(shè)其橫坐標(biāo)為m,然后用其分別表示出相關(guān)點(diǎn)的坐標(biāo),并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對(duì)應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點(diǎn)C即可.【詳解】(1)將點(diǎn)A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達(dá)式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設(shè)點(diǎn)R的縱坐標(biāo)為n,則QN=|n|,如果△AOK與以O(shè),Q,R為頂點(diǎn)的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點(diǎn)R的縱坐標(biāo)為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點(diǎn),∴設(shè)點(diǎn)C坐標(biāo)為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設(shè)CE解析式為:y=﹣x+b,將點(diǎn)E坐標(biāo)代入得b=.∴CE解析式為:y=﹣x﹣,∵點(diǎn)N的縱坐標(biāo)是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點(diǎn)N坐標(biāo)為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡(jiǎn)得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點(diǎn)C坐標(biāo)為(﹣1,3).答:點(diǎn)C坐標(biāo)為(﹣1,3).【考點(diǎn)】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項(xiàng)知識(shí)點(diǎn)與能力,難度較大.五、解答題1、(1)當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時(shí),PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過(guò)點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長(zhǎng)定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點(diǎn)H過(guò)點(diǎn)P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運(yùn)動(dòng)的時(shí)間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時(shí),PQ與⊙O相切.【考點(diǎn)】本題主要考查了切線長(zhǎng)定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長(zhǎng)定理.2、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,用勾股定理計(jì)算即可.②分點(diǎn)M在對(duì)稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點(diǎn)D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點(diǎn)D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時(shí),w有最大值,最大值為4,此時(shí)拋物線的解析式為.(3)①∵點(diǎn)A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點(diǎn),∴OP=PC=2,∵點(diǎn)C關(guān)于PM的對(duì)稱點(diǎn)N,∴OP=PC=PN=2,∴點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),如圖所示,當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點(diǎn)N落在拋物線的對(duì)稱軸上,且M在對(duì)稱軸的左側(cè),如圖所示,設(shè)對(duì)稱軸與AC交于點(diǎn)H,交x軸于點(diǎn)Q,過(guò)點(diǎn)P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點(diǎn)N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點(diǎn)M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點(diǎn)N落在拋物線的對(duì)稱軸上,且M在對(duì)稱軸的右側(cè),如
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)審核審批崗位分工制度
- 落實(shí)落細(xì)制度
- 2025高二英語(yǔ)期末模擬卷01(考試版A4)(人教版)含答案
- 2026福建浦盛產(chǎn)業(yè)發(fā)展集團(tuán)有限公司浦城縣浦恒供應(yīng)鏈有限公司職業(yè)經(jīng)理人招聘?jìng)淇伎荚囶}庫(kù)附答案解析
- 2026貴州省省、市兩級(jí)機(jī)關(guān)遴選公務(wù)員357人備考考試試題附答案解析
- 2026浦發(fā)銀行成都分行支行籌備中心社會(huì)招聘參考考試試題附答案解析
- 2026年中國(guó)科學(xué)院合肥腫瘤醫(yī)院血液透析中心醫(yī)護(hù)人員招聘7名備考考試試題附答案解析
- 2026廣東湛江市吳川市公安局招聘警務(wù)輔助人員32人(第一次)參考考試題庫(kù)附答案解析
- 2026年中國(guó)科學(xué)院合肥腫瘤醫(yī)院血液透析中心醫(yī)護(hù)人員招聘7名參考考試試題附答案解析
- 2026華南理工大學(xué)電力學(xué)院科研助理招聘?jìng)淇伎荚囋囶}附答案解析
- DB21-T 4279-2025 黑果腺肋花楸農(nóng)業(yè)氣象服務(wù)技術(shù)規(guī)程
- 湖南省2025-2026學(xué)年七年級(jí)歷史上學(xué)期期末復(fù)習(xí)試卷(含答案)
- 2026年中國(guó)熱帶農(nóng)業(yè)科學(xué)院南亞熱帶作物研究所第一批招聘23人備考題庫(kù)完美版
- 2026新疆阿合奇縣公益性崗位(鄉(xiāng)村振興專干)招聘44人考試參考試題及答案解析
- 2026年上海高考英語(yǔ)真題試卷+解析及答案
- 紡織倉(cāng)庫(kù)消防安全培訓(xùn)
- 10kV小區(qū)供配電設(shè)計(jì)、采購(gòu)、施工EPC投標(biāo)技術(shù)方案技術(shù)標(biāo)
- 新人教版七年級(jí)上冊(cè)初中數(shù)學(xué)全冊(cè)教材習(xí)題課件
- 2024-2025學(xué)年湖北省咸寧市高二生物學(xué)上冊(cè)期末達(dá)標(biāo)檢測(cè)試卷及答案
- JTG F40-2004 公路瀝青路面施工技術(shù)規(guī)范
- 三片飲料罐培訓(xùn)
評(píng)論
0/150
提交評(píng)論