2022年吉林省蛟河市中考數(shù)學能力檢測試卷及答案詳解參考_第1頁
2022年吉林省蛟河市中考數(shù)學能力檢測試卷及答案詳解參考_第2頁
2022年吉林省蛟河市中考數(shù)學能力檢測試卷及答案詳解參考_第3頁
2022年吉林省蛟河市中考數(shù)學能力檢測試卷及答案詳解參考_第4頁
2022年吉林省蛟河市中考數(shù)學能力檢測試卷及答案詳解參考_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

吉林省蛟河市中考數(shù)學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.2、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天3、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(

)A. B. C. D.4、拋物線的對稱軸為直線.若關于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.5、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③二、多選題(5小題,每小題3分,共計15分)1、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(

)A. B. C. D.2、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-33、觀察如圖推理過程,錯誤的是(

)A.因為的度數(shù)為,所以B.因為,所以C.因為垂直平分,所以D.因為,所以4、如圖,為的直徑延長線上的一點,與相切,切點為,是上一點,連接.已知,則下列結論正確的為(

)A.與相切 B.四邊形是菱形C. D.5、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若二次函數(shù)的頂點在x軸上,則__________.2、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.3、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.4、如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.5、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據(jù)題意,可列方程為_______.四、簡答題(2小題,每小題10分,共計20分)1、定義:若一個三角形最長邊是最短邊的2倍,我們把這樣的三角形叫做“和諧三角形”.在△ABC中,點F在邊AC上,D是邊BC上的一點,AB=BD,點A,D關于直線l對稱,且直線l經(jīng)過點F.(1)如圖1,求作點F;(用直尺和圓規(guī)作圖保留作圖痕跡,不寫作法)(2)如圖2,△ABC是“和諧三角形”,三邊長BC,AC,AB分別a,b,c,且滿足下列兩個條件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之間的等量關系;②若AE是△ABD的中線.求證:△ACE是“和諧三角形”.2、據(jù)說,在距今2500多年前,古希臘數(shù)學家就已經(jīng)較準確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結果均保留四個有效數(shù)字)五、解答題(4小題,每小題10分,共計40分)1、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.2、在中,,,將繞點C順時針旋轉一定的角度得到,點A、B的對應點分別是D、E.(1)當點E恰好在AC上時,如圖1,求的大??;(2)若時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形(請用兩組對邊分別相等的四邊形是平行四邊形)3、從一副普通的撲克牌中取出四張牌,它們的牌面數(shù)字分別為.將這四張撲克牌背面朝上,洗勻.(1)從中隨機抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是________;(2)從中隨機抽取一張,不放回,再從剩余的三張牌中隨機抽取一張.①利用畫樹狀圖或列表的方法,寫出取出的兩張牌的牌面數(shù)字所有可能的結果;②求抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.4、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.-參考答案-一、單選題1、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算是解題關鍵.2、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.3、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.4、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉化為二次函數(shù)與直線的交點問題,借助數(shù)形結合解題是關鍵.5、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側,如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結合的思想是解答本題的關鍵.二、多選題1、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點D為弦AC的中點得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關系,圓周角定理,等腰三角形的性質(zhì)等知識點,能求出的范圍是解此題的關鍵.2、C【解析】【分析】由方程有兩個相等的實數(shù)根,根據(jù)根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.3、ABC【解析】【分析】A.

根據(jù)定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!笨傻?B.

根據(jù)定理“同圓或等圓中,相等的圓心角所對的弧相等?!笨傻?C.

根據(jù)“垂徑定理”及弦的定義可得.D.

根據(jù)“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對應的其余各組量也相等?!笨傻?【詳解】由定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!盇.∵的度數(shù)是∴,故選項A錯誤.B.

由定理“同圓中相等的圓心角所對的弧相等?!?,B選項題干中不是同一個圓,故選項B錯誤.C.

由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對的兩條弧。沒有過圓心,不是直徑,并且,根據(jù)弦的定義,不是圓O的弦,因此無法判斷,故選項C錯誤.D.

∵∴即由定理“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對應的其余各組量也相等?!彼?,故選項D正確.【考點】本題旨在考查圓,圓心角,所對應的圓弧及弦的相關定義及性質(zhì)定理,熟練掌握圓的相關定理是解題的關鍵.4、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項所求得出:∠CPB=∠BPD,進而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關鍵.5、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.三、填空題1、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點坐標公式表示出頂點,再根據(jù)頂點在x軸上,建立等量關系求解即可.【詳解】解:的頂點坐標為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數(shù)一般式的頂點坐標,掌握二次函數(shù)一般式的頂點坐標公式是解題關鍵.2、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.3、【解析】【分析】直接根據(jù)“上加下減,左加右減”進行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關鍵.4、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結合頂點到x軸的距離最近可知當點A在頂點處時滿足條件,求得拋物線的頂點坐標即可求得答案.【詳解】解:∵AC⊥x軸,∴當點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時的位置是解題的關鍵.5、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關鍵將四個矩形用恰當?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P系.四、簡答題1、(1)見解析(2)①a=b+1②見解析【解析】【分析】(1)作AD的垂直平分線,交AC于F點即可;(2)①根據(jù)題意得到a=2c,聯(lián)立a2+4c2=4ac+a﹣b﹣1即可求解;②證明△ABE∽△CBA,得到,故可求解.【詳解】(1)如圖,點F為所求;(2)①∵△ABC是“和諧三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.聯(lián)立化簡得到a=b+1;②∵E點是BD中點∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和諧三角形”.【考點】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知垂直平分線的做法.2、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關鍵是找到各部分以及與其對應的影長.五、解答題1、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為AB=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點睛】本題考查作圖-應用與設計,等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.2、(1)(2)見解析【解析】【分析】(1)根據(jù)旋轉的性質(zhì)可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根據(jù)等邊對等角即可求出∠CAD=∠CDA=75°,再根據(jù)直角三角形的兩個銳角互余即可得出結論;(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=AC,然后根據(jù)30°所對的直角邊是斜邊的一半即可求出AB=AC,從而得出BF=AB,然后證出△ACD和△BCE為等邊三角形,再利用HL證出△CFD≌△ABC,證出DF=BE,即可證出結論.(1)解:∵△ABC繞點C順時針旋轉α得到△DEC,點E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣∠CAD=15°.(2)證明:如圖2,連接AD,∵點F是邊AC中點,∴BF=AF=CF=AC,∵∠ACB=30°,∴AB=AC,∴BF=CF=AB,∵△ABC繞點C順時針旋轉60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC,∴DE=BF,△ACD和△BCE為等邊三角形,∴BE=CB,∵點F為△ACD的邊AC的中點,∴DF⊥AC,在Rt△CFD和Rt△ABC中,∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四邊形BEDF是平行四邊形.【考點】本題主要考查的是旋轉的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定,掌握旋轉的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定是解決此題的關鍵.3、(1)(2)①見解析;②【分析】(1)直接由概率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論