2023廣東省雷州市中考數(shù)學通關題庫附完整答案詳解(考點梳理)_第1頁
2023廣東省雷州市中考數(shù)學通關題庫附完整答案詳解(考點梳理)_第2頁
2023廣東省雷州市中考數(shù)學通關題庫附完整答案詳解(考點梳理)_第3頁
2023廣東省雷州市中考數(shù)學通關題庫附完整答案詳解(考點梳理)_第4頁
2023廣東省雷州市中考數(shù)學通關題庫附完整答案詳解(考點梳理)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省雷州市中考數(shù)學通關題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(

)A.相交 B.相離 C.相切 D.無法判斷3、已知關于x的方程有一個根為1,則方程的另一個根為(

)A.-1 B.1 C.2 D.-24、如圖,在中,,,將繞點A順時針旋轉60°得到,此時點B的對應點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.45、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.二、多選題(5小題,每小題3分,共計15分)1、兩個關于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-22、已知,為半徑是3的圓周上兩點,為的中點,以線段,為鄰邊作菱形,頂點恰在該圓直徑的三等分點上,則該菱形的邊長為(

)A. B. C. D.3、如圖是拋物線的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結論正確的是(

)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離4、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根5、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn),下列結論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、關于的一元二次方程的一個根是2,則另一個根是__________.2、如圖,在平面直角坐標系中,坐標原點為O,拋物線y=a(x﹣2)2+1(a>0)的頂點為A,過點A作y軸的平行線交拋物線于點B,連接AO、BO,則△AOB的面積為________.3、如圖,在平面直角坐標系中,等腰直角三角形OAB,∠A=90°,點O為坐標原點,點B在x軸上,點A的坐標是(1,1).若將△OAB繞點O順時針方向依次旋轉45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…則A2021的坐標是______.4、如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.5、平面直角坐標系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉90°得到AB,當BK取最小值時,點B的坐標為_________.四、簡答題(2小題,每小題10分,共計20分)1、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)2、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.五、解答題(4小題,每小題10分,共計40分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、如圖,ABC是⊙O的內接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.3、已知關于x的方程x2+(m﹣2)x﹣2m=0.(1)求證:不論m取何值,此方程總有實數(shù)根;(2)若m為整數(shù),且方程的一個根小于2,請寫出一個滿足條件的m的值.4、如圖,CD是⊙O的直徑,∠EOD=84°,AE交⊙O于點B,且AB=OB,求∠A的度數(shù).-參考答案-一、單選題1、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關鍵是掌握軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.3、C【解析】【分析】根據(jù)根與系數(shù)的關系列出關于另一根t的方程,解方程即可.【詳解】解:設關于x的方程的另一個根為x=t,∴1+t=3,解得,t=2故選:C.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=?,x1x2=.4、B【分析】由題意以及旋轉的性質可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉的性質知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質,等邊三角形的三邊都相等,三個內角都相等,并且每一個內角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內角都相等的三角形是等邊三角形;有一個內角是60度的等腰三角形是等邊三角形;兩個內角為60度的三角形是等邊三角形.5、C【分析】如圖所示,連接CP,由切線的性質和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質,切線長定理,等腰直角三角形的性質與判定,勾股定理,熟知切線長定理是解題的關鍵.二、多選題1、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關鍵.2、BD【解析】【分析】過B作直徑,連接AC交AO與E,再根據(jù)兩種情況求出BD的兩個長度,再求得OD,OE,DE的值連接OD,根據(jù)勾股定理得到結論.【詳解】∵點B為的中點∴BD⊥AC①如圖∵點D恰再該圓直徑的三等分點上∴BD==2∴OD=OB-BD=1∵四邊形ABCD是菱形∴DE==1∴OE=2連接OC∵CE==∴邊CD=②如下圖BD==4同理可得,OD=1,OE=1,DE=2,連接OC,∵CE==∴CD=故選:BD【考點】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確地作出圖形是解題的關鍵.3、BCD【解析】【分析】根據(jù)二次函數(shù)的性質、方程與二次函數(shù)的關系、函數(shù)與不等式的關系、坐標系內直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當時,拋物線由最大值,則,即,故C選項正確;設直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質可設直線的表達式為,當與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質、方程與二次函數(shù)的關系、函數(shù)與不等式的關系、平面直角坐標系內直線的平移,解題的關鍵學會利用函數(shù)圖象解決問題,靈活運用相關知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.4、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.5、ABD【解析】【分析】根據(jù)等腰三角形的性質由BA=BC得∠A=∠C,再根據(jù)旋轉的性質得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉的性質,全等三角形的性質與判定,等腰三角形的性質,三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.三、填空題1、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關鍵.2、【解析】【分析】先求得頂點A的坐標,然后根據(jù)題意得出B的橫坐標,把橫坐標代入拋物線,得出B點坐標,從而求得A、B間的距離,最后計算面積即可.【詳解】設AB交x軸于C∵拋物線線y=a(x﹣2)2+1(a>0)的頂點為A,∴A(2,1),∵過點A作y軸的平行線交拋物線于點B,∴B的橫坐標為2,OC=2把x=2代入得y=-3,∴B(2,-3),∴AB=1+3=4,.故答案為:4.【考點】本題考查了二次函數(shù)圖象上點的坐標特征,求得A、B的坐標是解題的關鍵.3、【解析】【分析】根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),再由,即可求解.【詳解】解:根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),∵,∴A2021的坐標是.故答案為:【考點】本題主要考查了圖形的旋轉,明確題意,準確得到規(guī)律是解題的關鍵.4、【解析】【分析】根據(jù)已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標為通過以上條件可設頂點式,其中可通過代入A點坐標代入到拋物線解析式得出:所以拋物線解析式為當水面下降2米,通過拋物線在圖上的觀察可轉化為:當時,對應的拋物線上兩點之間的距離,也就是直線與拋物線相交的兩點之間的距離,可以通過把代入拋物線解析式得出:解得:

所以水面寬度增加到米,比原先的寬度當然是增加了故答案是:【考點】考查了二次函數(shù)的應用,根據(jù)已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關鍵.5、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,利用等腰直角三角形的性質可得M的坐標,從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標與圖形的變化﹣旋轉,全等三角形的判定和性質,一次函數(shù)的應用,垂線段最短等知識,解題的關鍵是正確尋找點B的運動軌跡,學會利用垂線段最短解決最短問題.四、簡答題1、避雷針BC的長度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長度為4.8米.【考點】本題考查解直角三角形的應用,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、(1)見解析;(2)2【解析】【分析】(1)由角平分線的定義可得∠DAG=∠BAF,再由∠ADE=∠B,即可證明△ADG∽△ABF;(2)由△ADG∽△ABF,可得,即可得到,則GF=AF-AG=2.【詳解】解:(1)∵AF平分∠BAC,∴∠DAG=∠BAF,∵∠ADE=∠B,∴△ADG∽△ABF;(2)∵△ADG∽△ABF,∴,∵,,∴,∴GF=AF-AG=2.【考點】本題主要考查了角平分線的定義,相似三角形的性質與判定,解題的關鍵在于能夠熟練掌握相似三角形的性質與判定條件.五、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關于點C中心對稱的點A'(-1,-3),B關于點C中心對稱的點B'(1,-1),C關于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎考點,掌握相關知識是解題關鍵.2、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點A作AF⊥EC交EC于點F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論