認(rèn)識勾股定理1課件+2025-2026學(xué)年北師大版(2024)數(shù)學(xué)八年級上冊_第1頁
認(rèn)識勾股定理1課件+2025-2026學(xué)年北師大版(2024)數(shù)學(xué)八年級上冊_第2頁
認(rèn)識勾股定理1課件+2025-2026學(xué)年北師大版(2024)數(shù)學(xué)八年級上冊_第3頁
認(rèn)識勾股定理1課件+2025-2026學(xué)年北師大版(2024)數(shù)學(xué)八年級上冊_第4頁
認(rèn)識勾股定理1課件+2025-2026學(xué)年北師大版(2024)數(shù)學(xué)八年級上冊_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1.1探索勾股定理第1課時認(rèn)識勾股定理第一章勾股定理1.了解勾股定理的內(nèi)容,理解并掌握直角三角形三

邊之間的數(shù)量關(guān)系.(重點)2.能夠運用勾股定理進(jìn)行簡單的計算.(難點)學(xué)習(xí)目標(biāo)如圖1-1,從電線桿離地面8m處向地面拉一條鋼索,如果這條鋼索在地面的固定點距離電線桿底部6m,那么需要多長的鋼索?在直角三角形中,任意兩條邊確定了,另外一條邊也就隨之確定,三邊之間存在著一種特定的數(shù)量關(guān)為系。事實上,古人發(fā)現(xiàn),直角三角形的三條邊長度的平方存在一種特殊的關(guān)系。讓我們一起去探索吧!導(dǎo)入新課情境引入講授新課思考·交流(1)在紙上畫若干個直角三角形,分別測量它們的三條邊,看看三邊長的平方之間有怎樣的關(guān)系。與同伴進(jìn)行交流。ABCABC(圖中每個小方格代表一個單位面積)圖1-2(2)如圖,直角三角形三邊的平方分別是多少,它們滿足上面所猜想的數(shù)量關(guān)系嗎?你是如何計算的?與同伴進(jìn)行交流。思考:在這幅圖中,邊長的平方如何刻畫?用正方形A,B,C的面積刻畫,就是證SA+SB=SC.我們的猜想如何驗證?你用什么辦法計算面積呢?測量、數(shù)格子可以用什么辦法計算C的面積呢?方法一:割方法二:補CBA可把正方形C分成兩個全等的等腰直角三角形,可求得正方形C的面積CBA可把正方形C分成四個全等的等腰直角三角形,可求得正方形C的面積CBA可在正方形C外邊圈一個大正方形用大正方形的面積減去4個直角三角形的面積,即可求得正方形C的面積方法三:拼(2)對于圖1-3中的直角三角形,是否還滿足這樣的關(guān)系?你又是如何計算的呢?1616992525正方形A中含有

個小方格,即A的面積是

個單位面積;正方形B中含有

個小方格,即B的面積是

個單位面積;正方形C中含有

個小方格,即C的面積是

個單位面積;ABCABC(圖中每個小方格代表一個單位面積)圖1-3由以上計算A,B,C三個圖形的面積,我們能得到什么結(jié)論?SA+SB=SC(3)如果直角三角形的兩直角邊長分別為1.6個單位長度和2.4個單位長度,那么上面所猜想的數(shù)量關(guān)系還成立嗎?說說你的理由?!窘Y(jié)論】以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.雙擊圖標(biāo)幾何語言:∵在Rt△ABC中,∠C=90°,∴a2+b2=c2(勾股定理).aABCbc∟總結(jié)歸納定理揭示了直角三角形三邊之間的關(guān)系.直角三角形兩直角邊的平方和等于斜邊的平方.如果a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2.勾股定理求下列直角三角形中未知邊的長:8x17125x解:由勾股定理可得:82+x2=172即:x2=172-82

x=15解:由勾股定理可得:

52+122=x2即:x2=52+122

x=13練一練例1.已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的長.

ADBC34

解:當(dāng)高AD在△ABC內(nèi)部時,如圖①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,所以BD=16;在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,所以CD=9.所以BC=BD+CD=25,所以△ABC的周長為25+20+15=60.例2.

在△ABC中,AB=20,AC=15,AD為BC邊上的高,且AD=12,求△ABC的周長.【方法點撥】題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.當(dāng)高AD在△ABC外部時,如圖②.同理可得BD=16,CD=9.所以BC=BD-CD=7,所以△ABC的周長為7+20+15=42.綜上所述,△ABC的周長為42或60.嘗試·思考在情境導(dǎo)入的問題中,需要多長的鋼索?從電線桿離地面8m處向地面拉一條鋼索,如果這條鋼索在地面的固定點距離電線桿底部6m,那么需要多長的鋼索?解:由勾股定理可得:

82+62=x2即:x2=100

x=101.圖中陰影部分是一個正方形,則此正方形的面積為

.8cm10cm36cm2當(dāng)堂檢測2.求下列圖中未知數(shù)x、y的值:解:由勾股定理可得:81+144=x2即:x2=225

x=15解:由勾股定理可得:

y2+144=169即:y2=25

y=53.在△ABC中,∠C=90°.(1)若a=6,b=8,則c=

.

(2)若c=13,b=12,則a=

.4.若直角三角形中,有兩邊長是3和4,則第三邊長的平方為()

A25B14C7D7或25105D5.一高為2.5米的木梯,架在高為2.4米的墻上(如圖),這時梯腳與墻的距離是多少?ABC解:在Rt△ABC中,根據(jù)勾股定理,得:BC2=AB2-AC2=2.52-2.42=0.49,所以BC=0.7.答:梯腳與墻的距離是0.7米.6.求斜邊長17cm、一條直角邊長15cm的直角三角形的面積.解:設(shè)另一條直角邊長是xcm.

由勾股定理得:152+x2=172,x2=172-152=289–225=64,所以x=±8(負(fù)值舍去),所以另一直角邊長為8cm,所以直角三角形的面積是:(cm2).

小明的媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你能解釋這是為什么嗎?

我們通常所說的29英寸或74厘米的電視機,是指其熒屏對角線的長度所以:售貨員沒搞錯。熒屏對角線大約為74厘米想一想

我們一起穿越回到2500年前,跟隨畢達(dá)哥拉斯再去他那位老朋友家做客,看到他朋友家用磚鋪成的地面(如下圖所示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論