2024-2025學(xué)年度黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷附答案詳解(研優(yōu)卷)_第1頁
2024-2025學(xué)年度黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷附答案詳解(研優(yōu)卷)_第2頁
2024-2025學(xué)年度黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷附答案詳解(研優(yōu)卷)_第3頁
2024-2025學(xué)年度黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷附答案詳解(研優(yōu)卷)_第4頁
2024-2025學(xué)年度黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷附答案詳解(研優(yōu)卷)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省虎林市中考數(shù)學(xué)考前沖刺測試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2、為了解某地區(qū)九年級(jí)男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級(jí)男生的身高數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計(jì)結(jié)果,隨機(jī)抽取該地區(qū)一名九年級(jí)男生,估計(jì)他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.873、若m,n是方程x2-x-2022=0的兩個(gè)根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20204、在某籃球邀請(qǐng)賽中,參賽的每兩個(gè)隊(duì)之間都要比賽一場,共比賽36場,設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為()A. B.C. D.5、如圖1,矩形中,點(diǎn)為的中點(diǎn),點(diǎn)沿從點(diǎn)運(yùn)動(dòng)到點(diǎn),設(shè),兩點(diǎn)間的距離為,,圖2是點(diǎn)運(yùn)動(dòng)時(shí)隨變化的關(guān)系圖象,則的長為(

)A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、下列關(guān)于x的方程沒有實(shí)數(shù)根的是(

)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=02、對(duì)于二次函數(shù)y=﹣2(x﹣1)(x+3),下列說法不正確的是()A.圖象的開口向上B.圖象與y軸交點(diǎn)坐標(biāo)是(0,6)C.當(dāng)x>﹣1時(shí),y隨x的增大而增大D.圖象的對(duì)稱軸是直線x=13、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點(diǎn)A,連接AO并延長交⊙O于點(diǎn)B;②以點(diǎn)B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點(diǎn);③連接CO,DO并延長分別交⊙O于點(diǎn)E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點(diǎn)G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點(diǎn)G B.∠FGA=∠FOAC.點(diǎn)G是線段EF的三等分點(diǎn) D.EF=AF4、已知直角三角形的兩條邊長恰好是方程的兩個(gè)根,則此直角三角形斜邊長是(

)A. B. C.3 D.55、對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)椋?,若函?shù),則下列結(jié)論正確的是(

)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、若點(diǎn)A(m,5)與點(diǎn)B(-4,n)關(guān)于原點(diǎn)成中心對(duì)稱,則m+n=________.2、如圖,△ABC和△DEC關(guān)于點(diǎn)C成中心對(duì)稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.3、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),與y軸交于點(diǎn)C.下列結(jié)論:①abc>0;②3a﹣c=0;③當(dāng)x<0時(shí),y隨x的增大而增大;④對(duì)于任意實(shí)數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號(hào)).4、準(zhǔn)備在一塊長為30米,寬為24米的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個(gè)正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.5、二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如表格所示,那么它的圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)是_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件,如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)x元(x為整數(shù)),每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請(qǐng)直接寫出W與x的函數(shù)關(guān)系式.2、解方程(組):(1)(2);(3)x(x-7)=8(7-x).3、在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為.求的值及拋物線與軸的交點(diǎn)坐標(biāo);若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.4、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).5、某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)為1元,日銷售量將減少10千克,現(xiàn)該商場要保證每天盈利8000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?6、如圖,已知正方形點(diǎn)在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說明理由;(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請(qǐng)說明理由.-參考答案-一、單選題1、C【解析】【分析】①由拋物線開口方向得到,對(duì)稱軸在軸右側(cè),得到與異號(hào),又拋物線與軸正半軸相交,得到,可得出,選項(xiàng)①錯(cuò)誤;②把代入中得,所以②正確;③由時(shí)對(duì)應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項(xiàng)③正確;④由對(duì)稱軸為直線,即時(shí),有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對(duì)稱軸在軸右側(cè),∴,∵拋物線與軸交于負(fù)半軸,∴,∴,①錯(cuò)誤;②當(dāng)時(shí),,∴,∵,∴,把代入中得,所以②正確;③當(dāng)時(shí),,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對(duì)稱軸為直線,∴時(shí),函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)決定拋物線的開口方向和大小.當(dāng)時(shí),拋物線向上開口;當(dāng)時(shí),拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對(duì)稱軸的位置:當(dāng)與同號(hào)時(shí),對(duì)稱軸在軸左;當(dāng)與異號(hào)時(shí),對(duì)稱軸在軸右.常數(shù)項(xiàng)決定拋物線與軸交點(diǎn):拋物線與軸交于.拋物線與軸交點(diǎn)個(gè)數(shù)由判別式確定:時(shí),拋物線與軸有2個(gè)交點(diǎn);時(shí),拋物線與軸有1個(gè)交點(diǎn);時(shí),拋物線與軸沒有交點(diǎn).2、C【解析】【分析】先計(jì)算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計(jì)概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計(jì)抽查該地區(qū)一名九年級(jí)男生的身高不低于170cm的概率是0.68.故選:C.【考點(diǎn)】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.3、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個(gè)根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點(diǎn)】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.4、A【解析】【分析】共有x個(gè)隊(duì)參加比賽,則每隊(duì)參加(x-1)場比賽,但2隊(duì)之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【考點(diǎn)】此題考查由實(shí)際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.5、C【解析】【分析】先利用圖2得出當(dāng)P點(diǎn)位于B點(diǎn)時(shí)和當(dāng)P點(diǎn)位于E點(diǎn)時(shí)的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點(diǎn)定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點(diǎn)位于B點(diǎn)時(shí),,即,當(dāng)P點(diǎn)位于E點(diǎn)時(shí),,即,則,∵,∴,即,∵∴,∵點(diǎn)為的中點(diǎn),∴,故選:C.【考點(diǎn)】本題考查了學(xué)生對(duì)函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點(diǎn)的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法.二、多選題1、ABD【解析】【分析】將選項(xiàng)中的式子轉(zhuǎn)換為一元二次方程一般式,根據(jù)根的判別式可得結(jié)果.【詳解】解:A、x2-x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;B、x2+x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;C、(x-1)(x+2)=0,,方程有實(shí)數(shù)根,此選項(xiàng)不符合題意;D、原式整理為:,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程無實(shí)數(shù)根.2、ACD【解析】【分析】將函數(shù)解析式變成頂點(diǎn)式,依照二次函數(shù)的性質(zhì)對(duì)比四個(gè)選項(xiàng)即可得出結(jié)論.【詳解】解:A、y=-2(x-1)(x+3),∵a=-2<0,∴圖象的開口向下,故本選項(xiàng)錯(cuò)誤,符合題意;B、y=-2(x-1)(x+3)=-2x2-4x+6,當(dāng)x=0時(shí),y=6,即圖象與y軸的交點(diǎn)坐標(biāo)是(0,6),故本選項(xiàng)正確,不符合題意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即當(dāng)x>-1,y隨x的增大而減少,故本選項(xiàng)錯(cuò)誤,符合題意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即圖象的對(duì)稱軸是直線x=-1,故本選項(xiàng)錯(cuò)誤,符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是將二次函數(shù)關(guān)系式變?yōu)轫旤c(diǎn)式,聯(lián)系二次函數(shù)性質(zhì)對(duì)比四個(gè)選項(xiàng)即可.3、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點(diǎn)G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點(diǎn)G是線段EF的三等分點(diǎn),故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯(cuò)誤,故答案為:ABC.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識(shí),解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.4、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計(jì)算即可;【詳解】,,∴或,當(dāng)2、3是直角邊時(shí),斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點(diǎn)】本題主要考查了一元二次方程的求解、勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對(duì)稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.三、填空題1、【解析】【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫縱坐標(biāo)都互為相反數(shù),進(jìn)行求解即可.【詳解】解:∵點(diǎn)A(m,5)與點(diǎn)B(-4,n)關(guān)于原點(diǎn)成中心對(duì)稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點(diǎn)】本題主要考查了關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)特征,代數(shù)式求值,熟知關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征是解題的關(guān)鍵.2、2【解析】【分析】根據(jù)中心對(duì)稱的性質(zhì)AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關(guān)于點(diǎn)C成中心對(duì)稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點(diǎn)】本題考查了中心對(duì)稱的性質(zhì),勾股定理等知識(shí),關(guān)鍵中心對(duì)稱性質(zhì)的應(yīng)用.3、①④##④①【解析】【分析】根據(jù)拋物線的對(duì)稱軸,開口方向,與軸的交點(diǎn)位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),即可求得對(duì)稱軸,以及當(dāng)時(shí),,進(jìn)而可以判斷②③,根據(jù)頂點(diǎn)求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對(duì)稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),對(duì)稱軸為,則,當(dāng),,,故②不正確,由函數(shù)圖象以及對(duì)稱軸為,可知,當(dāng)時(shí),隨的增大而增大,故③不正確,對(duì)稱軸為,則當(dāng)時(shí),取得最大值,對(duì)于任意實(shí)數(shù)m,總有,即,故④正確.故答案為:①④.【考點(diǎn)】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.4、1.25【解析】【分析】設(shè)小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設(shè)小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點(diǎn)】本題綜合考查一元二次方程的列法和求解,這類實(shí)際應(yīng)用的題目,關(guān)鍵是要結(jié)合題意和圖示,列對(duì)方程.5、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(diǎn)(-2,-3)和(0,-3)對(duì)稱點(diǎn),從而得到拋物線的對(duì)稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),然后根據(jù)拋物線的對(duì)稱性就看得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo).【詳解】∵x=-2,y=-3;x=0時(shí),y=-3,∴拋物線的對(duì)稱軸為直線x=-1,∵拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),∴拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0).故答案為(1,0).【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).四、解答題1、(1);(2)【解析】【分析】(1)根據(jù)題意先分類討論,當(dāng)售價(jià)超過50元但不超過80元時(shí),上漲的價(jià)格是元,就少賣件,用原來的210件去減得到銷售量;當(dāng)售價(jià)超過80元,超過80的部分是元,就少賣件,用原來的210件先減去售價(jià)從50漲到80之間少賣的30件再減去得到最終的銷售量.(2)根據(jù)利潤=(售價(jià)-成本)銷量,現(xiàn)在的單件利潤是元,再去乘以(1)中兩種情況下的銷售量,得到銷售利潤關(guān)于售價(jià)的式子.【詳解】(1)當(dāng)時(shí),,即.當(dāng)時(shí),,即,則(2)由利潤=(售價(jià)-成本)×銷售量可以列出函數(shù)關(guān)系式為【考點(diǎn)】本題考查二次函數(shù)實(shí)際應(yīng)用中的利潤問題,關(guān)鍵在于根據(jù)題意列出銷量與售價(jià)之間的一次函數(shù)關(guān)系式以及熟悉求利潤的公式,需要注意本題要根據(jù)售價(jià)的不同范圍進(jìn)行分類討論,結(jié)果要寫成分段函數(shù)的形式,還要標(biāo)上的取值范圍.2、(1)(2)x=-(3)x1=7,x2=-8【解析】【分析】(1)根據(jù)代入消元法,可得方程組的解;(2)根據(jù)等式的性質(zhì),化為整式方程,根據(jù)解整式方程,可得答案;(3)先移項(xiàng),再提公因式,再求解即可.(1)由①,得y=3x+4③將③代入②,得x-2(3x+4)=-3,解得x=-1,將x=-1代入③,解得y=1.所以原方程組的解為;(2);解:方程兩邊都乘(x+1)(x-1),得(x-1)2-3=(x+1)(x-1),解得x=-.經(jīng)檢驗(yàn),x=-是原方程的解.(3)x(x-7)=8(7-x).解:原方程可變形為x(x-7)+8(x-7)=0,(x-7)(x+8)=0.x-7=0,或x+8=0.∴x1=7,x2=-8.【考點(diǎn)】本題考查了解二元一次方程組、分式方程及一元二次方程,利用等式的性質(zhì)得出整式方程是解題關(guān)鍵,要檢驗(yàn)分時(shí)方程的根.3、(1)a=-1;坐標(biāo)為,;(2).【解析】【分析】(1)利用拋物線的對(duì)稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點(diǎn)坐標(biāo);(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時(shí),y<0,即-1-2+m<0;當(dāng)x=-1時(shí),y≥0,即-1+2+m≥0,然后解兩個(gè)不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當(dāng)時(shí),,解得,,所以拋物線與軸的交點(diǎn)坐標(biāo)為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對(duì)稱軸為直線,∵拋物線與軸的交點(diǎn)都在點(diǎn),之間,∴當(dāng)時(shí),,即,解得;當(dāng)時(shí),,即,解得,∴的取值范圍為.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.4、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論