中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測試卷及一套完整答案詳解_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測試卷及一套完整答案詳解_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測試卷及一套完整答案詳解_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測試卷及一套完整答案詳解_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》綜合提升測試卷及一套完整答案詳解_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》綜合提升測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑2、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、如圖,是的直徑,,若,則的度數(shù)是(

)A.32° B.60° C.68° D.64°4、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o5、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示,AB、AC為⊙O的兩條弦,延長CA到點D,AD=AB,若∠ADB=35°,則∠BOC=________.2、如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為________.3、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.4、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.5、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.三、解答題(5小題,每小題10分,共計50分)1、已知:如圖,、是的切線,切點分別是、,為上一點,過點作的切線,交、于、點,已知,求的周長.2、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.3、下列每個正方形的邊長為2,求下圖中陰影部分的面積.4、如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.5、如圖,一根長的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動),請畫出羊的活動區(qū)域.-參考答案-一、單選題1、D【解析】【分析】根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選D.【考點】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關(guān)鍵.2、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).3、D【解析】【分析】根據(jù)已知條件和圓心角、弧、弦的關(guān)系,可知,然后根據(jù)對頂角相等即可求解.【詳解】,.,,,故選:D.【考點】本題主要考查圓心角、弧、弦的關(guān)系、對頂角相等,較簡單,掌握基本概念是解題關(guān)鍵.4、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.5、B【解析】【分析】扇形面積公式為:利用公式直接計算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點】本題考查的是扇形的面積的計算,掌握扇形的面積的計算公式是解題的關(guān)鍵.二、填空題1、140°【解析】【分析】在等腰中,根據(jù)三角形的外角性質(zhì)可求出外角的度數(shù);而是同弧所對的圓周角和圓心角,可根據(jù)圓周角和圓心角的關(guān)系求出的度數(shù).【詳解】△ABD中,AB=AD,則:

∴∴故答案為【考點】考查圓周角定理,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.2、24°【解析】【分析】根據(jù)正五邊形的內(nèi)角和和正六邊形的內(nèi)角和公式求得正五邊形的每個內(nèi)角為108°和正六邊形的每個內(nèi)角為120°,然后根據(jù)周角的定義和等腰三角形性質(zhì)可得結(jié)論.【詳解】解:由題意得:正六邊形的每個內(nèi)角都等于120°,正五邊形的每個內(nèi)角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點】考查了正多邊形的內(nèi)角與外角、等腰三角形的性質(zhì),熟練掌握正五邊形的內(nèi)角和正六邊形的內(nèi)角求法是解題的關(guān)鍵.3、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點】本題考查了切線長定理,掌握從圓外一點引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.4、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標(biāo)為(1,2),可得拋物線的表達式為y=x2+1,把當(dāng)y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標(biāo)為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當(dāng)y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達式.5、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點為E,∵PA、PB分別是⊙O的切線,且切點為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.三、解答題1、的周長是.【解析】【分析】根據(jù)切線長定理得出PA=PB,EB=EQ,F(xiàn)Q=FA,代入PE+EF+PF=PE+EQ+FQ+PF即可求出答案.【詳解】∵PA、PB是⊙O的切線,切點分別是A、B,∴PA=PB=12cm,∵過Q點作⊙O的切線,交PA、PB于E、F點,∴EB=EQ,F(xiàn)Q=FA,∴△PEF的周長是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周長是24cm.【考點】本題主要考查對切線長定理的理解和掌握,能根據(jù)切線長定理得出PA=PB、EB=EQ、FQ=FA是解此題的關(guān)鍵.2、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得,再根據(jù)等量代換和直角三角形的性質(zhì)可得,由切線的判定可得結(jié)論;(2)如圖2,過點O作于G,連接OC,OD,則,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設(shè)⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵,∴,∵四邊形ABCD內(nèi)接于⊙O,∴又∴,∵,∴,∵,∴,∴,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點O作于G,連接OC,OD,則,∵,∴四邊形OGEC是矩形,∴,設(shè)⊙O的半徑為x,Rt△CDE中,,∴,∴,,由勾股定理得,∴,解得:,∴⊙O的半徑是4.5.【考點】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關(guān)性質(zhì)是解決問題的關(guān)鍵.3、2.28【解析】【分析】由圖形可知陰影面積=半圓面積-兩個小三角形面積和,根據(jù)公式計算即可.【詳解】πr2÷2-2×2÷2×2=3.14×2×2÷2-4=2.28.【考點】本題考查了圓的面積公式,解題的關(guān)鍵是熟練掌握間接法求陰影部分圖形的面積.4、(1)見解析;(2)見解析【解析】【分析】(1)連結(jié)OC,利用直角三角形斜邊中線等于斜邊一半可得OA=OB=OC,所以A,B,C三點在以O(shè)為圓心,OA長為半徑的圓上;(2)連結(jié)OD,可得OA=OB=OC=OD,所以A,B,C,D四點在以O(shè)為圓心,OA長為半徑的圓上.【詳解】解:(1)連結(jié)OC,在中,,的中點,∴OC=OA=OB,∴三點在以為圓心的圓上;(2)連結(jié)OD,∵,∴OA=OB=OC=OD,∴四點在以為圓心的圓上.【考點】此題考查了圓的定義:到定點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論