重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試題(含答案解析)_第1頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試題(含答案解析)_第2頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試題(含答案解析)_第3頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試題(含答案解析)_第4頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試題(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(

)A.4 B. C.5 D.2、如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F(xiàn),若BE=3,AF=5,則AC的長(zhǎng)為(

)A. B. C.10 D.83、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標(biāo)有1、2、3、4的四塊),你認(rèn)為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應(yīng)該帶(

)A.第1塊 B.第2塊 C.第3塊 D.第4塊4、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點(diǎn)F,連接BE.當(dāng)AD=BF時(shí),∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°5、如圖,平行四邊形ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,將一張直角三角形紙片對(duì)折,使點(diǎn)B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長(zhǎng)是_____cm.2、如圖,的三邊,,的長(zhǎng)分別是10,15,20,其三條角平分線相交于點(diǎn)O,連接OA,OB,OC,將分成三個(gè)三角形,則等于__________.3、要測(cè)量河兩岸相對(duì)的兩點(diǎn)A,B間的距離(AB垂直于河岸BF),先在BF上取兩點(diǎn)C,D,使CD=CB,再作出BF的垂線DE,且使A,C,E三點(diǎn)在同一條直線上,如圖,可以得△EDC≌△ABC,所以ED=AB.因此測(cè)得ED的長(zhǎng)就是AB的長(zhǎng).判定△EDC≌△ABC的理由是____________.4、如圖,AD,BE是的兩條高線,只需添加一個(gè)條件即可證明(不添加其它字母及輔助線),這個(gè)條件可以是______(寫出一個(gè)即可).5、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點(diǎn)A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個(gè)條件是______.(只填一個(gè)即可)三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:RtABC中,∠B=90°,D是BC上一點(diǎn),DF⊥BC交AC于點(diǎn)H,且DF=BC,F(xiàn)G⊥AC交BC于點(diǎn)E.求證:AB=DE.2、如圖,已知:AO=BO,OC=OD.求證:∠ADC=∠BCD.3、如圖,和都是等邊三角形,連接與,延長(zhǎng)交于點(diǎn)H.(1)證明:;(2)求的度數(shù);(3)連接,求證:平分.4、如圖,在中,,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點(diǎn)D從B向C運(yùn)動(dòng)時(shí),逐漸變__________(填“大”或“小”),但與的度數(shù)和始終是__________度.(2)當(dāng)DC的長(zhǎng)度是多少時(shí),,并說明理由.5、中,,,過點(diǎn)作,連接,,為平面內(nèi)一動(dòng)點(diǎn).(1)如圖1,點(diǎn)在上,連接,,過點(diǎn)作于點(diǎn),為中點(diǎn),連接并延長(zhǎng),交于點(diǎn).①若,,則;②求證:.(2)如圖2,連接,,過點(diǎn)作于點(diǎn),且滿足,連接,,過點(diǎn)作于點(diǎn),若,,,請(qǐng)求出線段的取值范圍.-參考答案-一、單選題1、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因?yàn)镋F為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點(diǎn)】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.3、B【解析】【分析】本題應(yīng)先假定選擇哪塊,再對(duì)應(yīng)三角形全等判定的條件進(jìn)行驗(yàn)證.【詳解】解:1、3、4塊玻璃不同時(shí)具備包括一完整邊在內(nèi)的三個(gè)證明全等的要素,所以不能帶它們?nèi)?,只有?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點(diǎn)】本題主要考查三角形全等的判定,看這4塊玻璃中哪個(gè)包含的條件符合某個(gè)判定.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計(jì)算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.5、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因?yàn)椤螦BD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯(cuò)誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.二、填空題1、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長(zhǎng)是18cm.故答案為8.2、2:3:4【解析】【分析】過點(diǎn)O分別向三邊作垂線段,通過角平分線的性質(zhì)得到三條垂線段長(zhǎng)度相等,再通過面積比等于底邊長(zhǎng)度之比得到答案.【詳解】解:過點(diǎn)O分別向BC、BA、AC作垂線段交于D、E、F三點(diǎn).∵CO、BO、AO分別平分∴∵,,∴故答案為:2:3:4【考點(diǎn)】本題考查了角平分線的性質(zhì),往三角形的三邊作垂線段并得到面積之比等于底之比是解題關(guān)鍵.3、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根據(jù)角邊角即可判定△EDC≌△ABC.【詳解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案為ASA【考點(diǎn)】本題考查了全等三角形的判定方法;需注意根據(jù)垂直定義得到的條件,以及隱含的對(duì)頂角相等,觀察圖形,找到隱含條件并熟練掌握全等三角形的判定定理是解題關(guān)鍵.4、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點(diǎn)】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.5、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當(dāng)添加AD=AC時(shí),可根據(jù)“SAS”判斷△ABD≌△ABC;當(dāng)添加∠D=∠C時(shí),可根據(jù)“AAS”判斷△ABD≌△ABC;當(dāng)添加∠ABD=∠ABC時(shí),可根據(jù)“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點(diǎn)】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.三、解答題1、見解析【解析】【分析】根據(jù)DF⊥BC,F(xiàn)G⊥AC,可得,由對(duì)頂角相等可得,進(jìn)而根據(jù)等角的余角相等可得,再利用ASA證明,即可得證.【詳解】證明:DF⊥BC,F(xiàn)G⊥AC,又∵在與中(ASA)AB=DE.【考點(diǎn)】本題考查了三角形全等的性質(zhì)與判定,等角的余角相等,掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、見解析【解析】【分析】利用“邊角邊”證明△AOD和△BOC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADO=∠BCO,根據(jù)等邊對(duì)等角可得∠ODC=∠OCD,然后相減整理即可得證.【詳解】證明:在△AOD和△BOC中,,

∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考點(diǎn)】本題考點(diǎn):全等三角形的判定與性質(zhì).3、(1)見解析(2)60°(3)見解析【解析】【分析】(1)由△ABD和△BCE都是等邊三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°?∠DBE,即可根據(jù)全等三角形的判定定理“SAS”證明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因?yàn)椤螧AD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于點(diǎn)F,BG⊥HC交HC的延長(zhǎng)線于點(diǎn)G,則∠AFB=∠BFH=∠G=90°,即可證明△BAF≌△BDG,則BF=BG,根據(jù)“到角的兩邊距離相等的點(diǎn)在角的平分線上”即可證明HB平分∠AHC.(1)證明:如圖1,∵△ABD和△BCE都是等邊三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°?∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如圖1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°?(∠HAD+∠HDA)=60°.(3)證明:如圖2,作BF⊥HA于點(diǎn)F,BG⊥HC交HC的延長(zhǎng)線于點(diǎn)G,則∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴點(diǎn)B在∠AHC的平分線上,∴HB平分∠AHC.【考點(diǎn)】此題考查等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、到角的兩邊距離相等的點(diǎn)在角的平分線上等知識(shí),證明三角形全等是解題的關(guān)鍵.4、(1)??;140(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內(nèi)角和即可得出結(jié)論;(2)當(dāng)DC=2時(shí),利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設(shè)∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當(dāng)點(diǎn)D從點(diǎn)B向C運(yùn)動(dòng)時(shí),x增大,∴y減小,+=180°-故答案為:小,140;(2)當(dāng)DC=2時(shí),△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點(diǎn)】此題主要考查學(xué)生對(duì)等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形外角的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,三角形的內(nèi)角和公式,解本題的關(guān)鍵是分類討論.5、(1)①

4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計(jì)算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長(zhǎng),從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論