版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北師大版9年級(jí)數(shù)學(xué)上冊期中試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下列方程中,一定是關(guān)于x的一元二次方程的是(
)A. B.C. D.2、-元二次方程2x2-2x-1=0的根的情況為(
)A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根3、若m、n是一元二次方程x2+3x﹣9=0的兩個(gè)根,則的值是(
)A.4 B.5 C.6 D.124、已知是方程的一個(gè)解,則的值為(
)A.10 B.-10 C.2 D.-405、如圖,已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值是()A.5 B.10 C.6 D.86、如圖,G是正方形ABCD內(nèi)一點(diǎn),以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉(zhuǎn)的思想說明線段BG與DE的關(guān)系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG7、若對(duì)于任意實(shí)數(shù)a,b,c,d,定義
=ad-bc,按照定義,若=0,則x的值為(
)A. B. C.3 D.二、多選題(3小題,每小題2分,共計(jì)6分)1、平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,分別添加下列條件使得四邊形ABCD是矩形的條件有(
)是菱形的條件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO2、下列說法正確的是(
).A.對(duì)角線相等的菱形是正方形B.順次連接對(duì)角線互相垂直的四邊形的四邊中點(diǎn),所得到的四邊形是菱形C.成軸對(duì)稱的兩個(gè)圖形全等D.有三個(gè)角相等的四邊形是矩形3、在下列選項(xiàng)中,是方程的根的是(
)A.6 B. C.2 D.第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),則EG2+FH2的值為_____.2、已知方程的一根為,則方程的另一根為_______.3、如圖,點(diǎn)E在正方形ABCD的邊CD上,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△ABF的位置,連接EF,過點(diǎn)A作EF的垂線,垂足為點(diǎn)H,與BC交于點(diǎn)G.若BG=3,CG=2,則CE的長為________.4、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個(gè)不相等的實(shí)數(shù)根;③若b=2a+3c,則方程有兩個(gè)不相等的實(shí)數(shù)根;④若m是方程的一個(gè)根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號(hào)是__________.5、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設(shè)道路的寬為xm,則根據(jù)題意,可列方程為_______.6、已知(m-1)+3x-5=0是一元二次方程,則m=________.7、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)A作AH⊥BC于點(diǎn)H,連接OH.若OB=4,S菱形ABCD=24,則OH的長為______________.8、在四邊形ABCD中,ABCD,ADBC,添加一個(gè)條件________,即可判定該四邊形是菱形.9、已知菱形的周長為40,兩個(gè)相鄰角度數(shù)之比為1∶2,則較長對(duì)角線的長為______.10、如圖,將正方形OEFG放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)E的坐標(biāo)為(2,3),則點(diǎn)F的坐標(biāo)為_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成(圖1:△ABC中,∠BAC=90°).(1)如圖2,若以直角三角形的三邊為邊向外作等邊三角形,則它們的面積、、之間的數(shù)量關(guān)系是(
).(2)如圖3,若以直角三角形的三邊為直徑向外作半圓,則它們的面積、、之間的數(shù)量關(guān)系是(
),請(qǐng)說明理由.(3)如圖4,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分別以AB、CD、AD、BC為邊向四邊形外作正方形,其面積分別為、、、,則、、、之間的數(shù)量關(guān)系式為(),請(qǐng)說明理由.2、在菱形中,,點(diǎn)在的延長線上,點(diǎn)是直線上的動(dòng)點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針得到線段,連接,.(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),請(qǐng)直接寫出線段與的數(shù)量關(guān)系;(2)如圖2,當(dāng)點(diǎn)在上時(shí),線段,,之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出結(jié)論并給出證明;(3)當(dāng)點(diǎn)在直線上時(shí),若,,,請(qǐng)直接寫出線段的長.3、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.4、如圖,在四邊形ABCD中,AD∥BC,對(duì)角線BD的垂直平分線與邊AD,BC分別相交于點(diǎn)M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.5、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?)
(2)6、解方程:(3x-1)2-25=0-參考答案-一、單選題1、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)最高為2次的整式方程是一元二次方程)逐一進(jìn)行判斷即可得.【詳解】解:A、,當(dāng)時(shí),不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點(diǎn)】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=12>0,進(jìn)而即可得出方程2x2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根.【詳解】∵a=2,b=-2,c=-1,∴△=b2-4ac=(-2)2-4×2×(-1)=12>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根.故選B.【考點(diǎn)】本題考查了根的判別式,牢記“當(dāng)Δ>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.3、C【解析】【分析】由于m、n是一元二次方程x2+3x?9=0的兩個(gè)根,根據(jù)根與系數(shù)的關(guān)系可得m+n=?3,mn=?9,而m是方程的一個(gè)根,可得m2+3m?9=0,即m2+3m=9,那么m2+4m+n=m2+3m+m+n,再把m2+3m、m+n的值整體代入計(jì)算即可.【詳解】解:∵m、n是一元二次方程x2+3x?9=0的兩個(gè)根,∴m+n=?3,mn=?9,∵m是x2+3x?9=0的一個(gè)根,∴m2+3m?9=0,∴m2+3m=9,∴m2+4m+n=m2+3m+m+n=9+(m+n)=9?3=6.故選:C.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握一元二次方程ax2+bx+c=0(a≠0)兩根x1、x2之間的關(guān)系:x1+x2=?,x1?x2=.4、B【解析】【分析】將a代入方程得到,再將其整體代入所求代數(shù)式即可得解.【詳解】∵a是方程的一個(gè)解,∴有,即,,∴,故選:B.【考點(diǎn)】本題考查了一元二次方程的解的定義,此類題的特點(diǎn)是利用方程的解的定義找到相等關(guān)系,再將其整體代入所求代數(shù)式,即可快速作答,盲目解一元二次方程求a值再代入計(jì)算,此方法耗時(shí)費(fèi)力不可取.5、A【解析】【分析】作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,則P是AC中點(diǎn),∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵M(jìn)Q⊥BD,∴AC∥MQ,∵M(jìn)為BC中點(diǎn),∴Q為AB中點(diǎn),∵N為CD中點(diǎn),四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點(diǎn)Q是AB的中點(diǎn),故PQ是△ABD的中位線,即點(diǎn)P是BD的中點(diǎn),同理可得,PM是△ABC的中位線,故點(diǎn)P是AC的中點(diǎn),即點(diǎn)P是菱形ABCD對(duì)角線的交點(diǎn),∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點(diǎn)】本題考查了軸對(duì)稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對(duì)稱找出P的位置.6、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉(zhuǎn)的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCE,∴BG=DE,故選項(xiàng)A.【考點(diǎn)】本題考查圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件,同角的余角性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件是解題關(guān)鍵.7、D【解析】【分析】根據(jù)新定義可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接開平方法解方程即可.【詳解】解:由題意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,兩邊直接開平方得:x=±,故選:D.【考點(diǎn)】此題主要考查了新定義,一元二次方程的解法--直接開平方法,關(guān)鍵是正確理解題意,列出方程.二、多選題1、AEBCD【解析】【分析】因?yàn)樗倪呅蜛BCD是平行四邊形,要成為矩形加上一個(gè)角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項(xiàng):∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個(gè)角是直角的平行四邊形是矩形)B選項(xiàng):∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對(duì)角線互相垂直的平行四邊形是菱形)C選項(xiàng):∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項(xiàng):如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項(xiàng):∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對(duì)角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點(diǎn)】考查了菱形和矩形的判定,解題關(guān)鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.2、AC【解析】【分析】根據(jù)正方形,矩形的判定,成軸對(duì)稱圖形的關(guān)系,對(duì)各選項(xiàng)進(jìn)行判斷即可;【詳解】解:對(duì)角線相等的菱形是正方形,正確,符合題意;B順次連接對(duì)角線互相垂直的四邊形的四邊中點(diǎn),所得到的四邊形是矩形,故原命題錯(cuò)誤,不符合題意;C成軸對(duì)稱的兩個(gè)圖形全等,正確,符合題意;D有四個(gè)角相等的四邊形是矩形,錯(cuò)誤,不符合題意.故答案為:A、C.【考點(diǎn)】本題考查了正方形,矩形的判定,成軸對(duì)稱圖形的關(guān)系.解題的關(guān)鍵在于對(duì)知識(shí)的靈活運(yùn)用.3、AD【解析】【分析】分別將選項(xiàng)帶入方程計(jì)算即可.【詳解】解:當(dāng)時(shí),,成立,6是方程的根;當(dāng)時(shí),,不是方程的根;當(dāng)時(shí),,2不是方程的根;當(dāng)時(shí),,成立,是方程的根;故選:AD.【考點(diǎn)】本題考查了一元二次方程方程的根,使方程成立的未知數(shù)的取值是方程的根.三、填空題1、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點(diǎn),∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點(diǎn)】本題考查的是中點(diǎn)四邊形,掌握三角形中位線定理、菱形的判定和性質(zhì)定理是解題的關(guān)鍵.2、【解析】【分析】設(shè)方程的另一個(gè)根為c,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)方程的另一個(gè)根為c,∵,∴.故答案為.【考點(diǎn)】本題考查的是根與系數(shù)的關(guān)系,熟記一元二次方程根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.3、【解析】【詳解】解:如圖所示,連接EG,由旋轉(zhuǎn)可知△ABF≌△ADE,∴DE=BF,AE=AF,∵AG⊥EF,∴H為EF的中點(diǎn),∴AG垂直平分EF,∴EG=FG,設(shè)CE=x,則DE=5-x=BF,F(xiàn)G=EG=BF+BG=8-x,∵∠C=90°,∴CE2+CG2=EG2即x2+22=(8?x)2解得x=,∴CE的長為,故答案為:.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解決該題的關(guān)鍵是根據(jù)勾股定理列方程.4、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯(cuò)誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個(gè)根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0,方程沒有實(shí)數(shù)根.5、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個(gè)矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關(guān)于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,關(guān)鍵將四個(gè)矩形用恰當(dāng)?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P(guān)系.6、-1【解析】【分析】根據(jù)一元二次方程的定義m-1≠0,且,解答即可.【詳解】∵(m-1)+3x-5=0是一元二次方程,∴m-1≠0,且,∴m-1≠0,且,∴,故答案為:-1.【考點(diǎn)】本題考查了一元二次方程的定義即含有一個(gè)未知數(shù)且含未知數(shù)項(xiàng)的次數(shù)最高是2的整式方程,熟練掌握定義是解題的關(guān)鍵.7、3【解析】【分析】由四邊形ABCD是菱形,OB=4,根據(jù)菱形的性質(zhì)可得BD=8,在根據(jù)菱形的面積等于兩條對(duì)角線乘積的一半求得AC=6,再根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求得OH的長.【詳解】∵四邊形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案為3.【考點(diǎn)】本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式(菱形的面積等于兩條對(duì)角線乘積的一半)求得AC=6是解題的關(guān)鍵.8、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點(diǎn)】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關(guān)鍵.9、【解析】【分析】根據(jù)已知可求得菱形的邊長及其兩內(nèi)角的度數(shù),證得是等邊三角形求得AC的長,再根據(jù)勾股定理求得OB的長,進(jìn)而可得BD的長,即可得到答案.【詳解】解:如圖,四邊形ABCD是菱形,連接AC、BD交于點(diǎn)O.∵兩個(gè)相鄰角度數(shù)之比為1∶2∴∵四邊形ABCD是菱形∴,∴是等邊三角形∴∴∴在中,∴,BD即為最長的對(duì)角線.故答案為:.【考點(diǎn)】本題考查等邊三角形的判定和性質(zhì)、勾股定理應(yīng)用以及菱形性質(zhì)的綜合應(yīng)用.熟練掌握菱形的性質(zhì)是關(guān)鍵.10、(﹣1,5)【解析】【詳解】【分析】結(jié)合全等三角形的性質(zhì)可以求得點(diǎn)G的坐標(biāo),再由正方形的中心對(duì)稱的性質(zhì)求得點(diǎn)F的坐標(biāo).【詳解】如圖,過點(diǎn)E作x軸的垂線EH,垂足為H.過點(diǎn)G作x軸的垂線GM,垂足為M,連接GE、FO交于點(diǎn)O′,∵四邊形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM與△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵點(diǎn)F與點(diǎn)O關(guān)于點(diǎn)O′對(duì)稱,∴點(diǎn)F的坐標(biāo)為(﹣1,5),故答案是:(﹣1,5).【考點(diǎn)】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、中點(diǎn)坐標(biāo)公式等,正確添加輔助線以及熟練掌握和運(yùn)用相關(guān)內(nèi)容是解題的關(guān)鍵.四、解答題1、(1);(2);理由見解析;(3),理由見解析.【解析】【分析】(1)利用直角的邊長就可以表示出等邊三角形、、的大小,滿足勾股定理;(2)利用直角的邊長就可以表示出半圓、、的大小,滿足勾股定理;(3)利用BC、AD的長分別表示正方形、、、的大小,根據(jù)BC=2AD,即可求解.【詳解】解:(1)由題意可得:,,,,,故答案為:;(2)由題意得:,,,,故答案為:;(3)過D作,交BC于點(diǎn)E,∵AD∥BC,∴四邊形ABED為平行四邊形,故,又∵BC=2AD,∴,,∴,∵,,,,∴,故答案為:.【考點(diǎn)】本題主要考查的是三角形、正方形、圓形的計(jì)算面積以及勾股定理,熟練掌握三角形、正方形、圓形的面積的計(jì)算公式是解答本題的關(guān)鍵.2、(1)AM=DF;(2),證明見解析;(3)1或5【解析】【分析】(1)可通過證明,即可利用全等三角形的性質(zhì)得出結(jié)論;(2)通過作輔助線,構(gòu)造等邊三角形DMN,再通過全等證明出DF=EN,利用等邊三角形得出DN=DM,DA=DB,求出AM=BN,即可證明題中三線段之間的關(guān)系;(3)分別討論當(dāng)E點(diǎn)在線段BD和DB的延長線上兩種情況,利用全等以及等邊三角形的相關(guān)結(jié)論即可求出DF的長.【詳解】解:(1)AM=DF;理由:∵菱形ABCD中,∠ABC=120°,可得△BCD和△ABD都是等邊三角形;∴BD=BA,∠DBA=60°,又由旋轉(zhuǎn)可知ME=MF,∠EMF=60°,得△MEF也是等邊三角形,∴EF=EM,∠MEF=60°,∴∠MEA=∠FED,可證:;∴AM=DF.(2)結(jié)論:證明:過點(diǎn)作交延長線于.∵四邊形是菱形∴,∴∵∴∴是等邊三角形∴,∵∴,∴是等邊三角形∴∵,∴是等邊三角形∴,,∴∴∴即:∵,∴∴.(3)1或5當(dāng)E點(diǎn)在線段BD上時(shí),由(2)知,,∵AB=6,∴BD=AD=6,∵BD=2BE,AD=3AM,∴BE=3,AM=2,∴DF=5;當(dāng)E點(diǎn)在線段DB的延長線上時(shí),如圖所示:作MN∥AB與DE交于點(diǎn)N,∵∠MDN=∠DAB=60°,利用平行線的性質(zhì)可得出∠DMN=60°,則△DMN是等邊三角形,∴MN=MD,又由∠DMN=∠EMF,∴∠EMN=∠FMD,∵M(jìn)E=MF,∴,∴DF=EN∵EN=EB-BN=BD-AM=3-AD=3-2=1;綜上可得:DF的長為1或5.【考點(diǎn)】本題涉及到了幾何圖形的動(dòng)點(diǎn)問題,綜合考查了等邊三角形的判定與性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)等內(nèi)容,要求學(xué)生理解相關(guān)概念與性質(zhì),能利用相關(guān)知識(shí)進(jìn)行邊角之間的轉(zhuǎn)化,本題難點(diǎn)在于作輔助線,考查了學(xué)生的綜合分析的能力,對(duì)學(xué)生推理分析能力有較高要求.3、(1)見解析(2)120【解析】【分析】(1)根據(jù)平行四邊形的性質(zhì)可得,利用全等三角形的判定和性質(zhì)得出,,依據(jù)菱形的判定定理(一組鄰邊相等的平行四邊形的菱形)即可證明;(2)連接AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 飛機(jī)油箱防爆技術(shù)
- 2026貴州康體旅投發(fā)展有限公司實(shí)習(xí)生招聘2人參考考試題庫及答案解析
- 2026吉林省吉林市永吉縣公益性崗位人員招聘66人備考考試題庫及答案解析
- 銀行股份公司管理制度(3篇)
- 石嘴山年會(huì)活動(dòng)策劃方案(3篇)
- 學(xué)生協(xié)商活動(dòng)策劃方案(3篇)
- 老客引流活動(dòng)策劃方案(3篇)
- 公司內(nèi)部pos管理制度(3篇)
- 2026北京協(xié)和醫(yī)院婦科內(nèi)分泌與生殖中心合同制科研助理招聘備考考試試題及答案解析
- 2026江蘇蘇州大學(xué)納米科學(xué)技術(shù)學(xué)院課程助教招聘(2025-2026-2學(xué)期)考試備考題庫及答案解析
- 建筑防水工程技術(shù)規(guī)程DBJ-T 15-19-2020
- 矢量網(wǎng)絡(luò)分析儀校準(zhǔn)規(guī)范
- 高考英語閱讀理解分類及方法課件
- 紹興金牡印染有限公司年產(chǎn)12500噸針織布、6800萬米梭織布高檔印染面料升級(jí)技改項(xiàng)目環(huán)境影響報(bào)告
- DHA乳狀液制備工藝優(yōu)化及氧化穩(wěn)定性的研究
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 岳麓書社版高中歷史必修三3.13《挑戰(zhàn)教皇的權(quán)威》課件(共28張PPT)
- GC/T 1201-2022國家物資儲(chǔ)備通用術(shù)語
- 污水管網(wǎng)監(jiān)理規(guī)劃
- GB/T 6730.65-2009鐵礦石全鐵含量的測定三氯化鈦還原重鉻酸鉀滴定法(常規(guī)方法)
- GB/T 35273-2020信息安全技術(shù)個(gè)人信息安全規(guī)范
評(píng)論
0/150
提交評(píng)論