版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,以O(shè)為圓心,長(zhǎng)為半徑畫弧別交于A、B兩點(diǎn),再分別以A、B為圓心,以長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形2、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:23、順次連接對(duì)角線互相垂直的四邊形的各邊中點(diǎn),所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形4、如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長(zhǎng)是()A.4 B.3 C.4或8 D.3或65、下列說法正確的是()A.平行四邊形的對(duì)角線互相平分且相等 B.矩形的對(duì)角線相等且互相平分C.菱形的對(duì)角線互相垂直且相等 D.正方形的對(duì)角線是正方形的對(duì)稱軸第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長(zhǎng)線于點(diǎn)E,則AE的長(zhǎng)是_____.2、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng),連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動(dòng)的路程是2,其中正確結(jié)論的序號(hào)為_____.3、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長(zhǎng)線上取一點(diǎn)C,使得DC=BD,在直線AD左側(cè)有一動(dòng)點(diǎn)P滿足∠PAD=∠PDB,連接PC,則線段CP長(zhǎng)的最大值為________.4、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長(zhǎng)為___________.5、在四邊形ABCD中,AB=BC=CD=DA=5cm,對(duì)角線AC,BD相交于點(diǎn)O,且AC=8cm,則四邊形ABCD的面積為______cm2.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,△ABC中,點(diǎn)D是邊AC的中點(diǎn),過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點(diǎn)E,點(diǎn)G是△ABC的邊BC延長(zhǎng)線上的點(diǎn),∠ACG的平分線交直線PQ于點(diǎn)F.求證:四邊形AECF是矩形.2、如圖,在菱形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB和BC上的點(diǎn),且BE=BF.求證:∠DEF=∠DFE.
3、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標(biāo)系,在CD邊上取一點(diǎn)E,將△ADE沿AE翻折,點(diǎn)D恰好落在BC邊上的點(diǎn)F處.(1)求線段EF長(zhǎng);(2)在平面內(nèi)找一點(diǎn)G,①使得以A、B、F、G為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個(gè)單位,若以A、O、F、G為頂點(diǎn)的四邊形為菱形,請(qǐng)求出m的值并寫出點(diǎn)G的坐標(biāo).4、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.5、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點(diǎn)睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對(duì)角線垂直的平行四邊形是菱形.2、D【解析】【分析】?jī)山M對(duì)角分別相等的四邊形是平行四邊形,所以∠A和∠C是對(duì)角,∠B和∠D是對(duì)角,對(duì)角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.3、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對(duì)邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點(diǎn),∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、矩形的判定等知識(shí)點(diǎn),熟練掌握三角形中位線定理是解題關(guān)鍵.4、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長(zhǎng)為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對(duì)應(yīng)線段相等;對(duì)應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.5、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對(duì)角線互相平分,不一定相等,A錯(cuò)誤;矩形的對(duì)角線相等且互相平分,B正確;菱形的對(duì)角線互相垂直,不一定相等,C錯(cuò)誤;正方形的對(duì)角線所在的直線是正方形的對(duì)稱軸,D錯(cuò)誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.二、填空題1、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計(jì)算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點(diǎn)睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運(yùn)用等腰三角形的判定定理是解題的關(guān)鍵.2、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長(zhǎng)OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長(zhǎng)OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動(dòng)的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識(shí)點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.3、##【解析】【分析】如圖,取AD的中點(diǎn)O,連接OP、OC,然后求出OP、OC的長(zhǎng),最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點(diǎn)O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點(diǎn)睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵在于正確添加常用輔助線,進(jìn)而求得OP、OC的長(zhǎng).4、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.5、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進(jìn)行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點(diǎn)睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.三、解答題1、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=CD,即可證明四邊形AECF是平行四邊形,再由∠ECF=∠DCE+∠DCF=,即可得證.【詳解】證明:∵PQ∥BC,∴∠DEC=∠BCE,∠DFC=∠GCF,∵CE平分∠BCA,CF平分∠ACG,∴,,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF,∵點(diǎn)D是邊AC的中點(diǎn),∴AD=CD,∴四邊形AECF是平行四邊形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF=,∴平行四邊形AECF是矩形.【點(diǎn)睛】本題主要考查了矩形的判定,平行線的性質(zhì),角平分線的定義,等腰三角形的性質(zhì)與判定,等等,熟練掌握矩形的判定條件是解題的關(guān)鍵.2、見解析【分析】根據(jù)菱形的性質(zhì)可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS證明△ADE≌△CDF得到DE=DF,則∠DEF=∠DFE.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握菱形的性質(zhì).3、(1)103;(2)①點(diǎn)G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當(dāng)AB為平行四邊形的對(duì)角線時(shí);當(dāng)AF為平行四邊形的對(duì)角線時(shí);當(dāng)BF為平行四邊形的對(duì)角線時(shí),分別求解點(diǎn)G的坐標(biāo)即可;②分三種情況討論,當(dāng)OF為對(duì)角線時(shí),由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當(dāng)AO為菱形的對(duì)角線時(shí),當(dāng)AF為菱形的對(duì)角線時(shí),結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當(dāng)AB為平行四邊形的對(duì)角線時(shí),AG=BF=8,AG∥∴點(diǎn)G的坐標(biāo)為:(﹣8,6);當(dāng)AF為平行四邊形的對(duì)角線時(shí),AG'=BF=8,AG'∥∴點(diǎn)G'的坐標(biāo)為:(8,6);當(dāng)BF為平行四邊形的對(duì)角線時(shí),F(xiàn)G''=AB=6,F(xiàn)G''∥∴點(diǎn)G''的坐標(biāo)為:(8,﹣6);綜上所述,點(diǎn)G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當(dāng)OF為菱形的對(duì)角線時(shí),∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設(shè)FG交x軸于H,如圖所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四邊形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴點(diǎn)G的坐標(biāo)為:(8,﹣6).如圖,當(dāng)AO為菱形的對(duì)角線時(shí),則AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(?8,6).如圖,當(dāng)AF為菱形的對(duì)角線時(shí),同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+綜上:平移距離m與G的坐標(biāo)分別為:m=4,G(8,?6)或m=6,G(?8,6)或m=7【點(diǎn)睛】本題是四邊形綜合題目,考查了矩形的判定與性質(zhì)、菱形的判定與性質(zhì),坐標(biāo)與圖形性質(zhì)、平行四邊形的性質(zhì)、勾股定理、折疊變換的性質(zhì)、平移的性質(zhì)等知識(shí);熟練掌握矩形的性質(zhì)和折疊的性質(zhì)是解題的關(guān)鍵.4、(1)四邊形是菱形,證明見解析;(2)【分析】(1)先證明四邊形是平行四邊形,再利用直角三角形斜邊上的中線等于斜邊的一半,證明從而可得結(jié)論;(2)先求解再求解的面積,再利用菱形的性質(zhì)可得菱形的面積.【詳解】證明:(1)四邊形是菱形,理由如下:,四邊形是平行四邊形,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形.(2)∠ABC=30°,AB=4,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形,故答案為:【點(diǎn)睛】本題考查的是平行四邊形的判定,菱形的判定與性質(zhì),直角三角形斜邊上的中線的性質(zhì),含的直角三角形的性質(zhì),勾股定理的應(yīng)用,掌握“有一組鄰邊相等的平行四邊形是菱形”是解本題的關(guān)鍵.5、(1)MN=AM+CN;(2)MN=AM+CN,理由見解析;(3)MN=CN-AM,理由見解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026上半年安徽事業(yè)單位聯(lián)考合肥市巢湖市招聘22人備考題庫有答案詳解
- 宮外孕患者隱私保護(hù)護(hù)理查房
- 新型冠狀試題及答案
- 湖南省體育系列職稱評(píng)價(jià)辦法
- 腸梗阻的影像學(xué)鑒別與手術(shù)指征把握
- 衛(wèi)生院救護(hù)車輛管理制度
- 木棧道衛(wèi)生管理制度
- 衛(wèi)生院分區(qū)就診管理制度
- 衛(wèi)生院會(huì)計(jì)績(jī)效工資制度
- 人員培衛(wèi)生管理制度
- 2026屆南通市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 寫字樓保潔培訓(xùn)課件
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫有完整答案詳解
- 計(jì)量宣貫培訓(xùn)制度
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫有答案詳解
- 2026.05.01施行的中華人民共和國(guó)漁業(yè)法(2025修訂)課件
- 原始股認(rèn)購協(xié)議書
- 嚴(yán)肅財(cái)經(jīng)紀(jì)律培訓(xùn)班課件
- 上海市復(fù)旦大學(xué)附中2026屆數(shù)學(xué)高一上期末質(zhì)量檢測(cè)試題含解析
- 企業(yè)員工食堂營(yíng)養(yǎng)搭配方案
- 2025年國(guó)家公務(wù)員國(guó)家能源局面試題及答案
評(píng)論
0/150
提交評(píng)論