版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川榮縣中學7年級數(shù)學下冊第四章三角形同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.2、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.3、如圖,在中,,,AD平分交BC于點D,在AB上截取,則的度數(shù)為()A.30° B.20° C.10° D.15°4、如圖,圖形中的的值是()A.50 B.60 C.70 D.805、如圖,為了估計一池塘岸邊兩點A,B之間的距離,小穎同學在池塘一側選取了一點P,測得,那么點A與點B之間的距離不可能是()A. B. C. D.6、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有()A.1個 B.2個 C.3個 D.4個7、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE8、下列條件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E9、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°10、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).2、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.3、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉90°至AB′,連接B'C,則△AB′C的面積為_____.4、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.5、已知a,b,c是的三邊長,滿足,c為奇數(shù),則______.6、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設的面積為,的面積為,則______.7、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.8、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.9、已知a,b,c是的三條邊長,化簡的結果為_______.10、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.三、解答題(6小題,每小題10分,共計60分)1、用無刻度的直尺作圖,保留作圖痕跡.(1)在圖1中,BD是△ABC的角平分線,作△ABC的平分內角∠BCA的角平分線;(2)在圖2中,AD是∠BAC的角平分線,作△ABC的∠BCA相鄰的外角的角平分線.2、如圖,E為AB上一點,BD∥AC,AB=BD,AC=BE.求證:BC=DE.3、如圖1,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/s的速度沿BC向點C運動,設點P的運動時間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當點P從點B開始運動時,點Q從點C出發(fā),以cm/s的速度沿CD向點D運動,是否存在這樣的v值,使得以A﹑B﹑P為頂點的三角形與以P﹑Q﹑C為頂點的三角形全等?若存在,請求出的值;若不存在,請說明理由.4、如圖,點E、A、C在同一直線上,AB∥CD,∠B=∠E,AC=CD.求證:BC=ED.5、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當CE位于點F的右側時,求證:△ADC≌△CEB;(2)如圖2,當CE位于點F的左側時,求證:ED=BE﹣AD;(3)如圖3,當CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關系,并證明你的猜想.6、已知:如圖,若ABCD,AB=CD且BE=CF.求證:AE=DF.-參考答案-一、單選題1、D【分析】已知條件AB=AC,還有公共角∠A,然后再結合選項所給條件和全等三角形的判定定理進行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項符合題意;故選:D.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關鍵.2、D【分析】設第三根木棒長為x厘米,根據(jù)三角形的三邊關系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.3、B【分析】利用已知條件證明△ADE≌△ADC(SAS),得到∠DEA=∠C,根據(jù)外角的性質可求的度數(shù).【詳解】解:∵AD是∠BAC的平分線,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B+,∴;故選:B【點睛】本題考查了全等三角形的性質與判定,解決本題的關鍵是證明△ADE≌△ADC.4、B【分析】根據(jù)三角形外角的性質:三角形一個外角的度數(shù)等于與其不相鄰的兩個內角的度數(shù)和進行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點睛】本題主要考查了三角形外角的性質,解一元一次方程,熟知三角形外角的性質是解題的關鍵.5、D【分析】首先根據(jù)三角形的三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,求出AB的取值范圍,然后再判斷各選項是否正確.【詳解】解:∵PA=100m,PB=90m,∴根據(jù)三角形的三邊關系得到:,∴,∴點A與點B之間的距離不可能是20m,故選A.【點睛】本題主要考查了三角形的三邊關系,掌握三角形兩邊只差小于第三邊、兩邊之和大于第三邊是解題的關鍵.6、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質,外角的性質等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關鍵.7、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進而逐一進行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項錯誤;D選項正確.故選:D.【點睛】本題考查了全等三角形的判定與性質,解決本題的關鍵是掌握全等三角形的判定與性質.8、A【分析】根據(jù)全等三角形的判定方法,對各選項分別判斷即可得解.【詳解】解:A、∠A=∠D,∠B=∠E,AC=DF,根據(jù)AAS可以判定,故此選項符合題意;B、∠A=∠E,AB=EF,∠B=∠D,AB與EF不是對應邊,不能判定,故此選項不符合題意;C、∠A=∠D,∠B=∠E,∠C=∠F,沒有邊對應相等,不可以判定,故此選項不符合題意;D、AB=DE,BC=EF,∠A=∠E,有兩邊對應相等,一對角不是對應角,不可以判定,故此選項不符合題意;故選A.【點睛】本題考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.9、B【分析】已知,得到,根據(jù)外角性質,得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點睛】本題主要考查了三角形外角定理的應用,準確分析計算是解題的關鍵.10、C【分析】根據(jù)組成三角形的三邊關系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.二、填空題1、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質并作輔助線構造出兩個三角形是解題的關鍵.2、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據(jù)全等的性質列出方程是解題的關鍵.3、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質和旋轉的性質以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關鍵.4、4<AB<10【分析】根據(jù)三角形的三邊關系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點睛】本題考查的是三角形的三邊關系,熟悉相關性質是解題的關鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.5、7【分析】絕對值與平方的取值均0,可知,,可得a、b的值,根據(jù)三角形三邊關系求出c的取值范圍,進而得到c的值.【詳解】解:,由三角形三邊關系可得為奇數(shù)故答案為:7.【點睛】本題考查了絕對值、平方的非負性,三角形的三邊關系等知識點.解題的關鍵是確定所求邊長的取值范圍.6、4【分析】利用三角形的中線的性質證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關鍵.7、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關鍵利用中線的性質得出為的中點.8、【分析】根據(jù)全等三角形的性質得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質,熟練應用全等三角形的性質,找到對應相等的邊,是求解該問題的關鍵.9、2b【分析】由題意根據(jù)三角形三邊關系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關鍵.10、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質和判定,解題的關鍵是靈活運用所學知識解決問題.三、解答題1、(1)見解析;(2)見解析.【分析】(1)作∠BAC的平分線交BD于點O,作射線CO交AB于E,線段CE即為所求;(2)作△ABC的∠ABC的外角的平分線交AD與D,作射線CD,射線CD即為所求.【詳解】(1)如圖1,線段CE為所求;(2)如圖2,線段CD為所求.【點睛】本題主要考查了基本作圖、三角形的外角、三角形的角平分線等知識點,理解三角形的內角平分線交于一點成為解答本題的關鍵.2、見解析【分析】根據(jù)平行線的性質可得,利用全等三角形的判定定理即可證明.【詳解】證明:∵,∴.在和中,,∴,∴.【點睛】題目主要考查全等三角形的判定定理和平行線的性質,熟練掌握全等三角形的判定定理是解題關鍵.3、(1)(10﹣2t);(2)當v=1或v=2.4時,△ABP和△PCQ全等.【分析】(1)根據(jù)題意求出BP,然后根據(jù)PC=BC-BP計算即可;(2)分△ABP≌△QCP和△ABP≌△PCQ兩種情況,根據(jù)全等三角形的性質解答即可.【詳解】解:(1)∵點P的速度是2cm/s,∴ts后BP=2tcm,∴PC=BC?BP=(10?2t)cm,故答案為:(10﹣2t);(2)由題意得:,∠B=∠C=90°,∴只存在△ABP≌△QCP和△ABP≌△PCQ兩種情況,當△ABP≌△PCQ時,∴AB=PC,BP=CQ,∴10?2t=6,2t=vt,解得,t=2,v=2,當△ABP≌△QCP時,∴AB=QC,BP=CP,∴2t=10-2t,vt=6,解得,t=2.5,v=2.4,∴綜上所述,當v=1或v=2.4時,△ABP和△PCQ全等.【點睛】本題考查了全等三角形的性質,解題的關鍵在于能夠利用分類討論的思想求解.4、見解析【分析】利用AAS定理證明△ACB≌△CED,根據(jù)全等三角形的對應邊相等證明即可.【詳解】證明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ACB≌△CED(AAS),∴BC=ED.【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紐約英文介紹
- 春季登山活動策劃方案(3篇)
- 網(wǎng)格化聯(lián)絡群管理制度(3篇)
- 獸藥執(zhí)法案例培訓課件
- 《GAT 737-2011保安服務監(jiān)管信息基本數(shù)據(jù)項》專題研究報告
- 企業(yè)危廢管理制度
- 2026湖北省定向華中科技大學選調生招錄參考題庫附答案
- 2026湖南湘西龍山縣紀委監(jiān)委、縣委巡察辦公開選調工作人員6人參考題庫附答案
- 2026福建寧德市藍海旅游發(fā)展有限公司招聘若干人備考題庫附答案
- 2026西安西京初級中學教師招聘考試備考題庫附答案
- 藥店物價收費員管理制度
- 數(shù)據(jù)風險監(jiān)測管理辦法
- 國家開放大學《公共政策概論》形考任務1-4答案
- 肝惡性腫瘤腹水護理
- 兒童語言發(fā)育遲緩課件
- 2025年河南省鄭州市中考一模英語試題及答案
- 《高等職業(yè)技術院校高鐵乘務專業(yè)英語教學課件》
- DB15T 3758-2024基本草原劃定調整技術規(guī)程
- 醫(yī)學類單招入學考試題庫及答案(修正版)
- 腦機接口技術在疼痛管理中的應用研究
- 《項目經(jīng)理安全管理培訓課件》
評論
0/150
提交評論