版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》達(dá)標(biāo)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,是的弦,點(diǎn)在過點(diǎn)的切線上,,交于點(diǎn).若,則的度數(shù)等于(
)A. B. C. D.2、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.3、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個(gè)動(dòng)點(diǎn)(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.54、“圓材埋壁”是我國古代著名數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學(xué)語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(
)A.寸 B.13寸 C.25寸 D.26寸5、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個(gè)輪子的半徑長為()A.m B.m C.5m D.m第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).2、若一個(gè)扇形的弧長是,面積是,則扇形的圓心角是__________度.3、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).4、如圖,A、D是⊙O上的兩點(diǎn),BC是直徑,若∠D=32°,則∠OAC=_______度.5、如圖,已知的半徑為2,內(nèi)接于,,則__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請(qǐng)直接寫出結(jié)果;若不能,請(qǐng)說明理由.2、如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,∠ABC的平分線交AD于點(diǎn)E.(1)求證:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.3、已知P為⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。4、問題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長為問題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;問題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對(duì)的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請(qǐng)你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?5、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進(jìn)一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點(diǎn)C在過點(diǎn)B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點(diǎn)】本題考查的是圓切線的運(yùn)用,熟練掌握運(yùn)算方法是關(guān)鍵.2、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.3、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點(diǎn)】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.4、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴
R=13,∴
CD=2R=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個(gè)輪子的半徑長為m,故選:D.【考點(diǎn)】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識(shí),正確的識(shí)別圖形是解題的關(guān)鍵.2、60【解析】【分析】根據(jù)扇形的面積公式求出半徑,然后根據(jù)弧長公式求出圓心角即可.【詳解】解:扇形的面積==6π,解得:r=6,又∵=2π,∴n=60.故答案為:60.【考點(diǎn)】此題考查了扇形的面積和弧長公式,解題的關(guān)鍵是掌握運(yùn)算方法.3、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進(jìn)而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長,再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設(shè)與交于點(diǎn)F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點(diǎn)】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關(guān)鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.4、58【解析】【分析】根據(jù)∠D的度數(shù),可以得到∠ABC的度數(shù),然后根據(jù)BC是直徑,從而可以得到∠BAC的度數(shù),然后可以得到∠OCA的度數(shù),再根據(jù)OA=OC,從而可以得到∠OAC的度數(shù).【詳解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC是直徑∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案為58.【考點(diǎn)】本題考查了圓周角定理,圓心角、弧、弦的關(guān)系.解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.5、【解析】【詳解】分析:根據(jù)圓內(nèi)接四邊形對(duì)邊互補(bǔ)和同弧所對(duì)的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為2.點(diǎn)睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題1、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運(yùn)用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(2)我們借助第一題的解答結(jié)果,運(yùn)用等量代換的方法可以求出陰影乙的面積.【詳解】(1)因?yàn)镺B=20,所以S半圓=×(20÷2)2,=×100,≈157;S扇形BOC=××R2,=××202,≈157;答:半圓面積是157,扇形COB的面積是157.(2)能求陰影乙的面積:因?yàn)椋螦OB=90°,∠COB=45°,所以半圓的直徑OB,△BOD的底是OB,高是半圓的半徑即OB,所以S半圓=×OB×OB,=OB2;S扇形BOC=××OB2,=××OB2;=OB2;所以S半圓=S扇形BOC,S半圓?①=S扇形?①,所以S甲=S乙,因?yàn)镾甲=16平方厘米,所以S乙=16平方厘米,答:陰影乙的面積是16平方厘米.【考點(diǎn)】此題主要考查圓及扇形的面積,解題的關(guān)鍵是熟知公式的運(yùn)用.2、(1)證明見解析(2)2【解析】【詳解】試題分析:由角平分線得出,得出,由圓周角定理得出證出再由三角形的外角性質(zhì)得出即可得出由得:,得出由圓周角定理得出是直徑,由勾股定理求出即可得出外接圓的半徑.試題解析:(1)證明:平分又平分連接,是直徑.平分∴半徑為3、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;(2)α+2β=90°,證明:連接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【點(diǎn)評(píng)】本題考查了圓周角定理,垂徑定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費(fèi)元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長;(2)延長EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的最大距離為OE+OP的長即可;(3)先求出所在圓的半徑,過點(diǎn)D作DG⊥BC,垂足為G,連接DO并延長交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,求出DP長即可求出修建這條小路花費(fèi)的最多費(fèi)用.【詳解】(1)如圖,若AO交BC于K,∵點(diǎn)O是△ABC的外接圓的圓心,AB=AC,∴AK⊥BC,BK=,∴AK=,在Rt△BOK中,OB2=BK2+OK2,設(shè)OB=x,∴x2=62+(8?x)2,解得x=,∴OB=;故答案為:.(2)如圖,連接EO,延長EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的距離最大,∵在是任意取一點(diǎn)異于點(diǎn)P的P′,連接OP′,P′E,∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,∵AB=4,AD=6,∴EO=4,OP=OC=,∴EP=OE+OP=7,∴E、P之間的最大距離為7.(3)作射線FE交BD于點(diǎn)M,∵BE=CE,EF⊥BC,是劣弧,∴所在圓的圓心在射線FE上,假設(shè)圓心為O,半徑為r,連接OC,則OC=r,OE=r?40,BE=CE=,在Rt△OEC中,r2=802+(r?40)2,解得:r=100,∴OE=OF?EF=60,過點(diǎn)D作DG⊥BC,垂足為G,∵AD∥BC,∠ADB=45°,∴∠DBC=45°,在Rt△BDG中,DG=BG=,在Rt△BEM中,ME=BE=80,∴ME>OE,∴點(diǎn)O在△BDC內(nèi)部,∴連接DO并延長交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,∵在上任取一點(diǎn)異于點(diǎn)P的點(diǎn)P′,連接OP′,P′D,∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,過點(diǎn)O作OH⊥DG,垂足為H,則OH=EG=40,DH=DG?HG=DG?OE=60,∴,∴DP=OD+r=,∴修建這條小路最多要花費(fèi)40×元.【考點(diǎn)】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 購房花式促銷活動(dòng)策劃方案
- 2025重慶大學(xué)能源與動(dòng)力工程學(xué)院勞務(wù)派遣實(shí)驗(yàn)室秘書招聘1人參考考試題庫及答案解析
- 深度解析(2026)《GBT 25906.3-2010信息技術(shù) 通 用多八位編碼字符集 錫伯文、滿文名義字符、顯現(xiàn)字符與合體字 48點(diǎn)陣字型 第3部分:大黑體》
- 深度解析(2026)《GBT 25904.2-2010信息技術(shù) 通 用多八位編碼字符集 錫伯文、滿文名義字符、顯現(xiàn)字符與合體字 24點(diǎn)陣字型 第2部分:行書體》
- 深度解析(2026)《GBT 25938-2010煉膠工序中小料自動(dòng)配料稱量系統(tǒng)》(2026年)深度解析
- 2026年河北滄州市人民醫(yī)院選聘高層次人才49名備考筆試題庫及答案解析
- 深度解析(2026)《GBT 25745-2010鑄造鋁合金熱處理》(2026年)深度解析
- 深度解析(2026)《GBT 25699-2010帶式橫流顆粒飼料干燥機(jī)》(2026年)深度解析
- 2025吉林長春市德惠市大學(xué)生鄉(xiāng)村醫(yī)生專項(xiàng)計(jì)劃招聘2人(1號(hào))備考筆試試題及答案解析
- 古代“閨怨詩”中性別情感經(jīng)濟(jì)與倫理規(guī)范
- 建筑洞口修復(fù)施工方案及流程
- 普通話拼音發(fā)音技巧大全
- 2025年中國航油校園招聘考試考點(diǎn)筆試題庫含答案
- 2024-2025學(xué)年山東省威海市文登區(qū)八年級(jí)(上)期末數(shù)學(xué)試卷(五四學(xué)制)(含部分答案)
- 多尺度腐蝕模型構(gòu)建-洞察及研究
- 小區(qū)保安服務(wù)項(xiàng)目背景及需求分析
- 2025液化石油氣站年度安全教育培訓(xùn)計(jì)劃及考試試題(含答案)
- 2025年義烏市機(jī)關(guān)事業(yè)單位編外聘用人員公開招聘179人筆試備考試題附答案詳解(預(yù)熱題)
- 醫(yī)院醫(yī)療質(zhì)量控制體系構(gòu)建
- 呼吸內(nèi)鏡介入治療匯報(bào)
- 2025年總工會(huì)招聘考試工會(huì)知識(shí)模擬試卷及答案
評(píng)論
0/150
提交評(píng)論