版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學(xué)綜合測試題目(比較難)解析一、解答題1.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點(diǎn)P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).2.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點(diǎn)F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.3.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.4.如圖,平分,平分,請判斷與的位置關(guān)系并說明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動時,問與否存在確定的數(shù)量關(guān)系?并說明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動時(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)在射線的反向延長線上運(yùn)動時(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點(diǎn)落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關(guān)系?請說明.(3)應(yīng)用:如圖③:把一個三角形的三個角向內(nèi)折疊之后,且三個頂點(diǎn)不重合,那么圖中的和是________.6.如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值若變化,說明理由.7.我們知道:光線反射時,反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點(diǎn)為點(diǎn)O,為法線(過入射點(diǎn)O且垂直于鏡面的直線),為反射光線,此時反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點(diǎn)O,一束光線從點(diǎn)A出發(fā),經(jīng)過平面鏡兩次反射后,恰好經(jīng)過點(diǎn)B.①如圖2,當(dāng)為多少度時,光線?請說明理由.②如圖3,若兩條光線、所在的直線相交于點(diǎn)E,延長發(fā)現(xiàn)和分別為一個內(nèi)角和一個外角的平分線,則與之間滿足的等量關(guān)系是_______.(直接寫出結(jié)果)(2)三個平面鏡、、相交于點(diǎn)M、N,一束光線從點(diǎn)A出發(fā),經(jīng)過平面鏡三次反射后,恰好經(jīng)過點(diǎn)E,請直接寫出、、與之間滿足的等量關(guān)系.8.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關(guān)系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.9.(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點(diǎn)P,∠P=n°,請畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為______;(2)若,直線經(jīng)過點(diǎn).①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問在旋轉(zhuǎn)過程中的度數(shù)是否會發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請說明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長線交于點(diǎn),請直接寫出與的關(guān)系(用含的代數(shù)式表示).【參考答案】一、解答題1.(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時:∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時:∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時:∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時:∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點(diǎn)P在直線b的下方時;②當(dāng)交點(diǎn)P在直線a,b之間時;③當(dāng)交點(diǎn)P在直線a的上方時;分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點(diǎn)P在直線a,b之間時;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時;【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時:∠EPB=∠1﹣50°=20°;②當(dāng)交點(diǎn)P在直線a,b之間時:∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點(diǎn)P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|;【點(diǎn)睛】考查知識點(diǎn):平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動點(diǎn)P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運(yùn)用是解題的突破口.2.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點(diǎn)睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.3.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.4.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點(diǎn)睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結(jié)果;②利用兩次外角定理得出結(jié)論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點(diǎn)睛】題主要考查了折疊變換、三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.6.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根據(jù)∠BEF與∠EFD的角平分線交于點(diǎn)P,可得∠EPF=90°,進(jìn)而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計算即可求得∠HPQ的度數(shù),進(jìn)而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補(bǔ),∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點(diǎn)P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì)、余角和補(bǔ)角,解決本題的關(guān)鍵是綜合運(yùn)用角平分線的定義、平行線的性質(zhì)、余角和補(bǔ)角.7.(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=解析:(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=180°,可得α+β=90°,再根據(jù)三角形內(nèi)角和定理進(jìn)行計算即可;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據(jù)三角形外角性質(zhì)可得∠MEN=2(β-α),再根據(jù)三角形外角性質(zhì)可得∠POQ=β-α,進(jìn)而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內(nèi)角和表示出∠BFD,再將∠M,∠N,∠BCD進(jìn)行運(yùn)算,變形得到∠BFD,即可得到關(guān)系式.【詳解】解:(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當(dāng)AM∥BN時,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當(dāng)∠POQ為90度時,光線AM∥NB;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設(shè)∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì)以及多邊形內(nèi)角和定理的綜合應(yīng)用,解題時注意:兩直線平行,同旁內(nèi)角互補(bǔ);三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.8.(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出∠EDB+∠FBD=180°,可得結(jié)論;(3)根據(jù)五等分得到∠CDP+∠CBP=36°,連接PC并延長,證明∠DCB=∠DPB+∠CBP+∠CDP,即可計算.【詳解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如圖,連接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=∠MBC,∠CDE=∠CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF;(3)∵∠MBC+∠CDN=180°,∴∠CDP+∠CBP=(∠MBC+∠CDN)=36°,連接PC并延長,∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP,∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP,∴∠DPB=90°-36°=54°.【點(diǎn)睛】本題考查多邊形內(nèi)角和與外角,三角形內(nèi)角和定理,平行線的判定等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考常考題型.9.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性解析:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性質(zhì)和三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠PCD=∠P+∠PBC,即可得解;(2)和(1)證明方法類似,先證明∠A+∠ABC=2(∠P+∠PBC),再證明∠A=2∠P即可得到答案;(3)延長BA交CD的延長線于F根據(jù)三角形內(nèi)角和定理和三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,即可得到第一種情況;延長AB交DC的延長線于F,同理即可得到答案.【詳解】解:(1)∠A=30°,∠P=15°∵∠ACD+∠ACB=180°,∠ACD=100°∴∠ACB=80°,∵∠ABC+∠ACB+∠A=180°(三角形內(nèi)角和定理),又∵∠ABC=70°,∴∠A=30°,∵P點(diǎn)是∠ABC和外角∠ACD的角平分線的交點(diǎn),∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°∴∠PCD=∠PBC+∠P∴∠P=50°-35°=15°(2)結(jié)論:∠A=2n°,理由如下:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一個外角等于與它不相鄰的兩個內(nèi)角和),又∵P點(diǎn)是∠ABC和外角∠ACD的角平分線的交點(diǎn),∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC)(等量替換),∴∠A+∠ABC=2∠P+2∠PBC,∴∠A+∠ABC=2∠P+∠ABC(等量替換),∴∠A=2∠P;∴∠A=2n°(3)(Ⅰ)如圖②延長BA交CD的延長線于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°。(Ⅱ)如圖③,延長AB交DC的延長線于F.∵∠F=180°﹣∠A﹣∠D,∠P=∠F,∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).∴∠A+∠D=180°﹣2n°綜上所述
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作造船協(xié)議書
- 白酒代銷合同范本
- 修建操場協(xié)議書
- 修建水渠協(xié)議書
- 催乳協(xié)議或合同
- 信訪息訪協(xié)議書
- 幼兒園的合同范本
- 電腦承包合同范本
- 扶貧捐贈合同范本
- 房屋改水電協(xié)議書
- 中國紀(jì)錄片發(fā)展歷程
- 普通機(jī)床主傳動系統(tǒng)的設(shè)計課程設(shè)計說明書
- 班組工程進(jìn)度款申請表
- 四年級閱讀訓(xùn)練概括文章主要內(nèi)容(完美)
- JJG 1033-2007電磁流量計
- GB/T 6541-1986石油產(chǎn)品油對水界面張力測定法(圓環(huán)法)
- GB/T 629-1997化學(xué)試劑氫氧化鈉
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 2895-2008塑料聚酯樹脂部分酸值和總酸值的測定
- 水利工程監(jiān)理規(guī)劃78648
- 護(hù)理人員應(yīng)知應(yīng)會手冊
評論
0/150
提交評論