版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省虎林市中考數(shù)學真題分類(平行線的證明)匯編專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,將△ABC紙片沿DE折疊,點A的對應點為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(
)A.40° B.60° C.80° D.140°2、在中,若一個內角等于另外兩個角的差,則(
)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于3、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.4、如圖,∠C=88°=∠D,AD與BE相交于點E,若∠DBC=23°,則∠CAE的度數(shù)是()A.23° B.25° C.27° D.無法確定5、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°6、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等邊三角形 B.銳角三角形 C.鈍角三角形 D.直角三角形7、將一個直角三角板和一把直尺按如圖所示的方式擺放,若∠2=55°,則∠1的度數(shù)為(
)A.45° B.55° C.25° D.35°8、如圖,在△ABC中,∠C=70o,沿圖中虛線截去∠C,則∠1+∠2=(
)A.360o B.250o C.180o D.140o第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.2、“等邊三角形是銳角三角形”的逆命題是_________.3、請寫出命題“如果,那么”的逆命題:________.4、命題“全等三角形的對應角相等”的逆命題是_____命題.(填“真”或“假”)5、如圖,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD與BE交于H,則∠CHD=_____.6、一副三角板按如圖所示疊放在一起,其中點B、D重合,若固定三角形AOB,改變三角板ACD的位置(其中A點位置始終不變),下列條件①∠BAD=30°;②∠BAD=60°;③∠BAD=120°;④∠BAD=150°中,能得到的CD∥AB的有__________.(填序號)7、下列命題中,其逆命題成立的是__.(只填寫序號)①同旁內角互補,兩直線平行;②如果兩個角是直角,那么它們相等;③如果兩個實數(shù)相等,那么它們的平方相等;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.三、解答題(7小題,每小題10分,共計70分)1、請閱讀下列材料,并完成相應的任務:有趣的“飛鏢圖”如圖,這種形似飛鏢的四邊形,可以形象地稱它為“飛鏢圖”.當我們仔細觀察后發(fā)現(xiàn),它實際上就是凹四邊形.那么它具有哪些性質呢?又將怎樣應用呢?下面我們進行認識與探究:凹四邊形通俗地說,就是一個角“凹”進去的四邊形,其性質有:凹四邊形中最大內角外面的角等于其余三個內角之和.(即如圖1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如圖2,連接AB,則在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如圖3,連接CD并延長至F,∵∠1和∠3分別是△ACD和△BCD的一個外角,......大家在探究的過程中,還發(fā)現(xiàn)有很多方法可以證明這一結論,你有自己的方法嗎?任務:(1)填空:“方法一”主要依據的一個數(shù)學定理是;(2)探索:根據“方法二”中輔助線的添加方式,寫出該證明過程的剩余部分;(3)應用:如圖4,AE是∠CAD的平分線,BF是∠CBD的平分線,AE與BF交于G,若∠ADB=150°,∠AGB=110°,請你直接寫出∠C的大?。?、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.3、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點為,,求的度數(shù).(2)如圖,和分別平分和,當點在直線上時,且B、P、D三點共線,,則_________.(3)在(2)的基礎上,當點在直線外時,如下圖:,,求的度數(shù).4、直線MN與直線PQ相交于O,∠POM=60°,點A在射線OP上運動,點B在射線OM上運動.(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.(3)在(2)的條件下,在△CDE中,如果有一個角是另一個角的2倍,請直接寫出∠DCE的度數(shù).5、(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關系?并說明理由.6、如圖,△ABC中,∠BAC=90°,點D是BC上的一點,將△ABC沿AD翻折后,點B恰好落在線段CD上的B'處,且AB'平分∠CAD.求∠BAB'的度數(shù).7、完成下列推理過程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()-參考答案-一、單選題1、C【解析】【分析】根據平角定義和折疊的性質,得,再利用三角形的內角和定理進行轉換,得從而解題.【詳解】解:根據平角的定義和折疊的性質,得.又,,,∴,故選:C【考點】此題綜合運用了平角的定義、折疊的性質和三角形的內角和定理.2、D【解析】【分析】先設三角形的兩個內角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設三角形的一個內角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內角和的性質,解題的關鍵是熟練掌握三角形內角和的性質,分情況討論.3、B【解析】【分析】首先根據三角形內角和與∠P得出∠PBC+∠PCB,然后根據角平分線的性質得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內角和的運用,熟練掌握,即可解題.4、A【解析】【分析】利用三角形的內角和180°和對頂角相等求解即可.【詳解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故選:A.【考點】本題考查三角形的內角和定理、對頂角相等,熟練掌握三角形的內角和是180°是解答的關鍵.5、D【解析】【分析】根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.6、D【解析】【分析】由于∠A-∠C=∠B,再結合∠A+∠B+∠C=180°,易求∠A,進而可判斷三角形的形狀.【詳解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故選D.【考點】本題考查了三角形內角和定理,求出∠A的度數(shù)是解題的關鍵.7、D【解析】【分析】先對圖形標注,再根據平行線的性質得∠1=∠4,然后根據直角三角形兩個銳角互余及對頂角相等得出答案.【詳解】如圖,∵,∴∠1=∠4(兩直線平行,內錯角相等).∵∠2=∠3(對頂角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故選:D.【考點】本題考查平行線的性質及三角形內角和定理,靈活得選擇平行線的性質是解題的關鍵.8、B【解析】【分析】根據三角形內角和定理得出∠A+∠B=110°,進而利用四邊形內角和定理得出答案.【詳解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故選:B.【考點】本題主要考查了多邊形內角和定理,根據題意得出∠A+∠B的度數(shù)是解題關鍵.二、填空題1、【解析】【分析】根據折疊得出∠D=∠B=28°,根據三角形的外角性質得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質和折疊的性質,能熟記三角形的外角性質是解此題的關鍵,注意:三角形的一個外角等于與它不相鄰的兩個內角的和.2、銳角三角形是等邊三角形【解析】【分析】交換題目中的題設和結論即可.【詳解】解:原命題“等邊三角形是銳角三角形”的條件是“一個三角形是等邊三角形”,結論是“這個三角形是銳角三角形”,互換條件和結論可得到逆命題“如果一個三角形是銳角三角形,那么這個三角形是等邊三角形”.簡化為“銳角三角形是等邊三角形”,故答案為:銳角三角形是等邊三角形.【考點】本題考查了命題與逆命題,能準確找到命題中的題設和結論是解題的關鍵.3、如果,那么【解析】【分析】根據逆命題的概念解答即可.【詳解】解:命題“如果,那么”的逆命題是“如果,那么”,故答案為:如果,那么.【考點】此題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.4、假【解析】【分析】首先分清題設是:兩個三角形全等,結論是:對應角相等,把題設與結論互換即可得到逆命題,然后判斷正誤即可.【詳解】解:“全等三角形的對應角相等”的題設是:兩個三角形全等,結論是:對應角相等,因而逆命題是:對應角相等的三角形全等.是一個假命題.故答案為:假.【考點】本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.5、45°##45°【解析】【分析】延長CH交AB于點F,銳角三角形三條高交于一點,所以CF⊥AB,再根據三角形內角和定理得出答案.【詳解】解:延長CH交AB于點F,在△ABC中,三邊的高交于一點,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三內角之和為180°,∴∠CHD=45°,故答案為:45°.【考點】本題考查三角形中,三條邊的高交于一點,且內角和為180°.6、①④【解析】【分析】分兩種情況,根據CD∥AB,利用平行線的性質,即可得到∠BAD的度數(shù).【詳解】解:如圖所示:當CD∥AB時,∠BAD=∠D=30°;如圖所示,當AB∥CD時,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;∴∠BAD=150°或∠BAD=30°.故答案為:①④.【考點】本題主要考查了平行線的判定,平行線的判定是由角的數(shù)量關系判斷兩直線的位置關系,平行線的性質是由直線的平行關系來尋找角的數(shù)量關系.7、①④##④①【解析】【詳解】把一個命題的條件和結論互換就得到它的逆命題,再分析逆命題是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.①兩直線平行,同旁內角互補,正確;②如果兩個角相等,那么它們是直角,錯誤;③如果兩個實數(shù)的平方相等,那么這兩個實數(shù)相等,錯誤;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,正確.故答案為①④.三、解答題1、(1)三角形內角和定理(或三角形的內角和等于180°);(2)見解析;(3)70°【解析】【分析】(1)根據三角形內角和定理,即可求解;(2)根據三角形外角的性質可得∠1=∠2+∠A,∠3=∠4+∠B,從而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求證;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,從而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分線,BF是∠CBD的平分線,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形內角和定理(或三角形的內角和等于180°)(2)證明:連接CD并延長至F,∵∠1和∠2分別是△ACD和△BCD的一個外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分線,BF是∠CBD的平分線,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考點】本題主要考查了三角形的內角和定理,三角形外角的性質,有關角平分線的計算,熟練掌握三角形內角和定理,三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.2、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據同角的余角相等得到,然后證明,然后根據全等三角形對應邊相等得到,,然后通過線段之間的轉化即可證明;(2)首先根據三角形內角和定理得到,然后證明,根據全等三角形對應邊相等得到,最后通過線段之間的轉化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點】此題考查了全等三角形的性質和判定,同角的與相等,三角形內角和定理等知識,解題的關鍵是根據同角的余角相等或三角形內角和定理得到.3、(1);(2);(3).【解析】【分析】(1)根據對頂角相等以及四邊形的內角和進行判斷即可;(2)法一:根據以及和分別平分和,算出和,從而算出;法二:根據三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:連接AC,根據三角形的內角和與角平分線的性質分別求出,,故可求解;法二:連接BD并延長到G根據三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【詳解】(1)如圖邊上的高所在直線和邊上的高所在直線的交點為∴又∵∴∵在四邊形中,內角和為∴.(2)法一:∵和分別平分和∴又∵∴∴∴.法二:連接BD,∵B、P、D三點共線∴BD、AF、CE交于P點∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分別平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°?100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC?(∠PAB+∠PCB)=100°?80°=20°.(3)法一:如圖:連接AC∵,∴∴又∵和分別平分和∴∴∴.法二:如圖,連接BD并延長到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考點】本題考查三角形的外角,角平分線的定義,三角形內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、(1)∠AEB的度數(shù)為120°;(2)∠CED的大小不發(fā)生變化,其值為60°;(3)∠DCE的度數(shù)為40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根據AE、BE分別是∠BAO和∠ABO的角平分線,可得∠EAB和∠EBA的值,在△EAB中,根據三角形內角和即可得出∠AEB的大?。唬?)不發(fā)生變化,延長BC、AD交于點F,根據角平分線的定義以及三角形內角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度數(shù);(3)分三種情況求解即可.【詳解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分別是∠BAO和∠ABO的角平分線,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不發(fā)生變化,理由如下:如圖,延長BC、AD交于點F,∵點D、C分別是∠PAB和∠ABM的角平分線上的兩點,∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①當∠DCE=2∠E時,顯然不符合題意;②當∠DCE=2∠CDE時,∠DCE==80°;③當∠DCE=∠CDE時,∠DCE==40°,綜上可知,∠DCE的度數(shù)40°或80°.【考點】本題考查角平分線的定義,三角形內角和定理,以及分類討論的數(shù)學思想,解題的關鍵是熟練掌握三角形的內角和的定理.5、(1)20°;(2)∠EAD=∠C﹣∠B.理由見解析.【解析】【分析】(1)根據三角形內角和定理求出∠BAC,求出∠CAE,根據三角形內角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;(2)根據三角形內角和定理求出∠BAC,求出∠CAE,根據三角形內角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可.【詳解】(1)∵∠B=40°,∠C=80°,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職農產品貯藏與加工(農產品保鮮技術)試題及答案
- 2025年高職民航空中安全保衛(wèi)(航空安全規(guī)范)試題及答案
- 2025年高職第二學年(汽車檢測與維修技術)汽車診斷綜合測試試題及答案
- 2025年高職(護理)急救護理學試題及答案
- 2025年大學大三(導游業(yè)務)帶團技巧實踐測試試題及答案
- 2025年中職工業(yè)機器人技術基礎(技術基礎理論)試題及答案
- 2025年大學大一(水利水電工程)水利工程施工技術應用綜合測試題及答案
- 2025年中職新能源汽車(保養(yǎng)規(guī)范)試題及答案
- 2025年大學海洋科學(海洋環(huán)境監(jiān)測)試題及答案
- 2025年大學食品生物技術(微生物檢測方法)試題及答案
- 江蘇省南通市2025年中考物理試卷(含答案)
- 非車險業(yè)務拓展創(chuàng)新工作總結及工作計劃
- 現(xiàn)場缺陷件管理辦法
- 車企核心用戶(KOC)分層運營指南
- 初三語文競賽試題及答案
- 二年級勞動試卷及答案
- 企業(yè)成本管理分析
- 課題申報書:“主渠道”定位下的行政復議調解制度建構研究
- 砂石采購合同范例
- 《EVA生產流程》課件
- 英語動詞大全100個
評論
0/150
提交評論