版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD2、如圖,在長方形ABCD中,AB=10cm,點E在線段AD上,且AE=6cm,動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,同時點Q在線段BC上.以vcm/s的速度由點B向點C運動,當△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或3、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.34、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm5、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,菱形ABCD的對角線AC,BD相交于點O,E為DC的中點,若,則菱形的周長為__________.2、如圖,在四邊形中,,分別是的中點,分別以為直徑作半圓,這兩個半圓面積的和為,則的長為_______.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.4、如圖,直線l經(jīng)過正方形ABCD的頂點B,點A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.5、如圖,在平面直角坐標系中,點A,B,C的坐標分別為(8,0),(8,6),(0,6),點D為線段BC上一動點,將△OCD沿OD翻折,使點C落到點E處.當B,E兩點之間距離最短時,點D的坐標為____.三、解答題(5小題,每小題10分,共計50分)1、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長;(2)求證:.2、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點,N是CO的中點,求證:BM∥DN,BM=DN.
3、如圖,已知△ACB中,∠ACB=90°,E是AB的中點,連接EC,過點A作AD∥EC,過點C作CD∥EA,AD與CD交于點D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).4、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點B按逆時針方向旋轉角a到的位置,AB與相交于點D,AC與分別交于點E,F(xiàn).(1)求證:BCF;(2)當C=a時,判定四邊形的形狀并說明理由.5、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關鍵.2、D【解析】【分析】根據(jù)題意可知當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP,②當AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關系求解即可.【詳解】解:當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,∴點P和點Q的運動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點,注意數(shù)形結合和分類討論并熟練掌握相關性質(zhì)及定理是解題的關鍵.3、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關鍵在于能夠熟練掌握相關知識進行求解.4、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準確識圖是解題的關鍵.5、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質(zhì)找出相等的邊是關鍵.二、填空題1、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點O∴點O是AC的中點∵E為DC的中點∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識,掌握這些知識是解答本題的關鍵.2、4【解析】【分析】根據(jù)題意連接BD,取BD的中點M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點M,連接EM、FM,延長EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點,∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點睛】本題主要考查對勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識點的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關鍵.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質(zhì),找到點的位置是四個一循環(huán),每旋轉一次半徑增加2的規(guī)律是解題的關鍵.4、10【解析】【分析】根據(jù)正方形的性質(zhì),結合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結合的思想是解答本題的關鍵.5、(3,6)【解析】【分析】連接OB,證得當O、E、B在同一直線上時,BE取得最小值,再利用勾股定理構造方程求解即可.【詳解】解:連接OB,∵點A,B,C的坐標分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當O、E、B在同一直線上時,BE取得最小值,此時BE=4,∠DEB=90°,設CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點D的坐標為(3,6).【點睛】本題考查了矩形的判定和性質(zhì),坐標與圖形,折疊的性質(zhì),勾股定理,解題的關鍵是學會利用參數(shù)構建方程解決問題,三、解答題1、(1);(2)見解析【分析】(1)根據(jù)30°角所對直角邊等于斜邊的一半,得到AD=3,根據(jù)等腰直角三角形,得到CD=AD=3,根據(jù)勾股定理,得到AC的長即可;(2)根據(jù)斜邊上的中線等于斜邊的一半,得到DE=DC,根據(jù)等腰三角形三線合一性質(zhì),證明即可.【詳解】(1),;(2)連接DE,,,,,,.【點睛】本題考查了30°角的性質(zhì),等腰直角三角形的性質(zhì),斜邊上中線的性質(zhì),等腰三角形三線合一性質(zhì),熟練掌握性質(zhì)是解題的關鍵.2、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點,N是CO的中點,進而可得MO=ON,進而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M為AO的中點,N為CO的中點,即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關鍵.3、(1)見解析;(2)【分析】(1)由AD//CE,CD//AE,得四邊形AECD為平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì),得CE=AE,可知四邊形ADCE是菱形;(2)由菱形的性質(zhì)可得當∠DAE=60°時,∠CAE=30°,可求BC,再根據(jù)勾股定理求出AC,最后求面積即可.【詳解】解:(1)∵∥,∥,∴四邊形是平行四邊形.∵,是的中點,∴,∴四邊形是菱形;(2)∵四邊形是菱形,,∴.∵在Rt△中,,,,∴,∴.∴.【點睛】此題主要考查了菱形的性質(zhì)和判定,含30度角的直角三角形的性質(zhì),直角三角形斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 知識點及2025秋期末測試卷(附答案)-蘇少版(2024)初中美術七年級上學期
- (新教材)2026年滬科版七年級下冊數(shù)學 9.3 分式方程 課件
- 臀紅預防的日常護理要點
- 痔瘡患者的社交護理技巧
- 2025年辦公樓外墻施工安全責任合同協(xié)議
- 征求意見稿-醫(yī)療機構開展疫苗臨床試驗能力建設規(guī)范
- 高危非致殘性缺血性腦血管事件復發(fā)風險評估和抗栓治療
- 《保護生物的多樣性》同步練習2
- 2025年農(nóng)產(chǎn)品加工企業(yè)發(fā)展策略
- 土壤微生物基因流
- 2025年青島市公安局警務輔助人員招錄筆試考試試題(含答案)
- 科技園區(qū)入駐合作協(xié)議
- 電大??啤秱€人與團隊管理》期末答案排序版
- 山東科技大學《基礎化學(實驗)》2025-2026學年第一學期期末試卷
- 2025西部機場集團航空物流有限公司招聘筆試考試備考試題及答案解析
- 2025年吐魯番輔警招聘考試題庫必考題
- 護理放射科小講課
- 機關黨支部2025年度抓基層黨建工作述職報告
- 2025年生態(tài)環(huán)境監(jiān)測系統(tǒng)建設可行性研究報告及總結分析
- 2023北京海淀高一(上)期末英語試卷含答案
- 離心泵課件教學課件
評論
0/150
提交評論