重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試練習(xí)題(含答案解析)_第1頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試練習(xí)題(含答案解析)_第2頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試練習(xí)題(含答案解析)_第3頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試練習(xí)題(含答案解析)_第4頁
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、菱形ABCD的周長(zhǎng)是8cm,∠ABC=60°,那么這個(gè)菱形的對(duì)角線BD的長(zhǎng)是()A.cm B.2cm C.1cm D.2cm2、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對(duì)角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.4、如圖,矩形OABC的邊OA長(zhǎng)為2,邊AB長(zhǎng)為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對(duì)角線OB的長(zhǎng)為半徑畫弧,交正半軸于一點(diǎn),則這個(gè)點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.5、如圖,已知是平分線上的一點(diǎn),,,是的中點(diǎn),,如果是上一個(gè)動(dòng)點(diǎn),則的最小值為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長(zhǎng)的最小值為________.2、如果一個(gè)矩形較短的邊長(zhǎng)為5cm,兩條對(duì)角線的夾角為60°,則這個(gè)矩形的對(duì)角線長(zhǎng)是_________cm.3、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長(zhǎng)為_____.4、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)為___.5、如圖,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長(zhǎng)為_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知,在中,,,點(diǎn)D為BC的中點(diǎn).(1)觀察猜想如圖①,若點(diǎn)E、F分別是AB、AC的中點(diǎn),則線段DE與DF的數(shù)量關(guān)系是______________;線段DE與DF的位置關(guān)系是______________.(2)類比探究如圖②,若點(diǎn)E、F分別是AB、AC上的點(diǎn),且,上述結(jié)論是否仍然成立,若成立,請(qǐng)證明:若不成立,請(qǐng)說明理由;(3)解決問題如圖③,若點(diǎn)E、F分別為AB、CA延長(zhǎng)線的點(diǎn),且,請(qǐng)直接寫出的面積.

2、在ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長(zhǎng)線于點(diǎn)G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.3、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長(zhǎng)線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長(zhǎng).4、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對(duì)稱.

(1)求證:B,M關(guān)于AE對(duì)稱;(2)若的平分線交AE的延長(zhǎng)線于G,求證:.5、如圖,已知△ABC中,D是AB上一點(diǎn),AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點(diǎn),求證:BD=2EF.

-參考答案-一、單選題1、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長(zhǎng)為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對(duì)折得到,再利用勾股定理列方程是解本題的關(guān)鍵.4、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長(zhǎng)度,弧長(zhǎng)就是的長(zhǎng)度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長(zhǎng)為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長(zhǎng),是解決該類問題的關(guān)鍵.5、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點(diǎn)P是∠AOB平分線上的一點(diǎn),,∴,∵PD⊥OA,M是OP的中點(diǎn),∴,∴∵點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn)∴當(dāng)時(shí),PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.二、填空題1、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,求出CA′的最小值即可解決問題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長(zhǎng)的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長(zhǎng)的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考填空題中的壓軸題.2、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點(diǎn)睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對(duì)角線相等且互相平分”是解本題的關(guān)鍵.3、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).4、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.5、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.三、解答題1、(1),;(2)成立,證明見解析;(3)【分析】(1)由點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結(jié)論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),∴,,,,∵,,∴,,∴即,故答案為:,;(2)結(jié)論成立:,,證明:如圖所示,連接,∵,,D為BC的中點(diǎn),∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如圖所示,連接AD,∵,,D為BC的中點(diǎn),∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴【點(diǎn)睛】本題主要考查了三角形中位線定理,全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析】(1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;(2)利用等高模型即可解決問題.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴DE、DF分別是△ABC中BC邊、AC邊上的中位線,∴DE∥BC,DE=BC,DF∥AC,DF=AC,∵DE∥FC,DF∥EC,∴四邊形DECF為平行四邊形,又∵AC=BC,∴DF=DE,∴為菱形;(2)∵,,∴四邊形是平行四邊形,∴與ADG面積相等的平行四邊形有:DECF,DEFB,EGCF,AEFD.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、三角形中位線定理,等高模型等知識(shí),解題的關(guān)鍵是熟練掌握菱形的判定方法,屬于中考??碱}型.3、(1)見解析;(2)平行四邊形DEFB的周長(zhǎng)=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點(diǎn)D,E分別是AC,AB的中點(diǎn),∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點(diǎn),AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長(zhǎng)=2(DE+BD)=2(4+10)=28(cm).【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識(shí);熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.4、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,

∵D、M關(guān)于直線AF對(duì)稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關(guān)于AE對(duì)稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,F(xiàn)G平分∠EFC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論