版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2、如圖,點(diǎn)E是長(zhǎng)方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長(zhǎng)為()A.5 B.12 C.5 D.133、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.64、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.135、在數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們判斷一個(gè)四邊形門框是否為矩形.下面是某個(gè)合作小組的4位同學(xué)擬定的方案,其中正確的是()A.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量其內(nèi)角是否均為直角 D.測(cè)量對(duì)角線是否垂直第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,直線l經(jīng)過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.2、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.3、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點(diǎn)E,AB=8cm,AD=24cm,BC=26cm,點(diǎn)P從點(diǎn)A出發(fā),沿邊AD以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿邊CB以3cm/s的速度向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).連接PQ,過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,則當(dāng)運(yùn)動(dòng)到第__________s時(shí),△DEC≌△PFQ.4、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為_(kāi)_________cm.5、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_(kāi)____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖所示,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無(wú)論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.點(diǎn)E恰是CD的中點(diǎn).求證:(1)△ADE≌△FCE;(2)BE⊥AF.3、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點(diǎn)O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).4、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線段AD的長(zhǎng).(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.5、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過(guò)C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過(guò)點(diǎn)A作AF⊥BE,寫(xiě)出AF,BD,CD之間的數(shù)量關(guān)系并說(shuō)明理由.-參考答案-一、單選題1、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時(shí),取中點(diǎn)為點(diǎn),過(guò)點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個(gè).故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對(duì)折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.3、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).4、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)矩形的判定:(1)四個(gè)角均為直角;(2)對(duì)邊互相平行且相等;(3)對(duì)角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對(duì)角線相等且平分,故錯(cuò)誤;B、對(duì)邊分別相等只能判定四邊形是平行四邊形,故錯(cuò)誤;C、矩形的四個(gè)角都是直角,故正確;D、矩形的對(duì)角線互相相等且平分,所以垂直與否與矩形的判定無(wú)關(guān),故錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.二、填空題1、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.2、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.3、6或7【解析】【分析】分兩種情況進(jìn)行討論,當(dāng)在點(diǎn)的右側(cè)時(shí),在點(diǎn)的左側(cè)時(shí),根據(jù)△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當(dāng)在點(diǎn)的右側(cè)時(shí),∴,解得當(dāng)在點(diǎn)的左側(cè)時(shí),∴,解得故答案為:或【點(diǎn)睛】此題考查了全等三角形的性質(zhì),矩形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)題意,求得對(duì)應(yīng)線段的長(zhǎng),分情況討論列方程求解.4、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).5、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時(shí),x最小,此時(shí),,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是作輔助線證三角形全等.2、(1)見(jiàn)解析;(2)見(jiàn)解析.【分析】(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質(zhì)證出AB=BF,由全等三角形的性質(zhì)得出AE=FE,由等腰三角形的性質(zhì)可得出結(jié)論.【詳解】證明:(1)∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠D=∠ECF,∵E為CD的中點(diǎn),∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四邊形ABCD為平行四邊形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的性質(zhì)與判定,角平分線的定義,等腰三角形的性質(zhì)與判定,熟知相關(guān)知識(shí)是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結(jié)論;
(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進(jìn)而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關(guān)鍵.4、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問(wèn)題.
(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.求出此時(shí)x的值即可判斷.
(3)分兩種情形分別求解即可解決問(wèn)題.【詳解】解:(1)如圖1中,∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD===8.(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.∵OF垂直平分線段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,當(dāng)x=12時(shí),點(diǎn)F與點(diǎn)D重合.(3)①當(dāng)點(diǎn)F在點(diǎn)D左側(cè)時(shí),作EG⊥BC于G,連接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分線段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,F(xiàn)G=4,∴EG==3,在Rt△DEG中,DE==3,∵AC=2DE,∴AC=6,∴x2=AC2=72.②當(dāng)點(diǎn)F在點(diǎn)D右側(cè)時(shí),作EG⊥BC于G,連接EF,DE.易知BF=EF=7,F(xiàn)G=2,EG===3,∴DE==3,∴AC=2DE=6,∴x2=AC2=216.【點(diǎn)睛】本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),線段的垂直平分線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題.5、(1)證明見(jiàn)解析;(2)BD=CD+2AF,理由見(jiàn)解析【分析】(1)延長(zhǎng)BA與CD的延長(zhǎng)線交于點(diǎn)G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲管理師面試題及成本控制方法含答案
- 產(chǎn)品設(shè)計(jì)員技能考核與參考題目
- 2025年健康食品產(chǎn)業(yè)化項(xiàng)目可行性研究報(bào)告
- 2025年人工智能客服系統(tǒng)構(gòu)建項(xiàng)目可行性研究報(bào)告
- 2025年養(yǎng)老服務(wù)智能平臺(tái)構(gòu)建項(xiàng)目可行性研究報(bào)告
- 2025年智能家居解決方案企業(yè)項(xiàng)目可行性研究報(bào)告
- 2025年城市生活垃圾分類處理項(xiàng)目可行性研究報(bào)告
- 2025年多功能移動(dòng)支付應(yīng)用開(kāi)發(fā)項(xiàng)目可行性研究報(bào)告
- 2026年天津公安警官職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)帶答案詳解
- 校園歷程與未來(lái)
- 2025年度數(shù)字化城市管理信息系統(tǒng)安全自查報(bào)告
- 營(yíng)銷沙盤實(shí)訓(xùn)報(bào)告
- 教輔銷售年終總結(jié)
- 加盟連鎖店的風(fēng)險(xiǎn)管理與應(yīng)對(duì)策略
- 煤礦正式工合同范本
- 婚介紅娘合同協(xié)議書(shū)
- 北師大版(2024)八年級(jí)上冊(cè)生物期末復(fù)習(xí)必背考點(diǎn)清單
- GB/T 17119-2025連續(xù)搬運(yùn)設(shè)備帶承載托輥的帶式輸送機(jī)運(yùn)行功率和張力的計(jì)算
- 單側(cè)忽略的課件
- 做賬實(shí)操-公立醫(yī)院成本核算報(bào)告
- 多癌種液體活檢標(biāo)志物的篩選與驗(yàn)證方案
評(píng)論
0/150
提交評(píng)論