版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年廣東省普寧市新世界中英文學校數(shù)學高三第一學期期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.2.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.3.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或4.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.5.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.6.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.7.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-8.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.9.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內(nèi)同學征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李10.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.11.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題12.設實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.15.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;16.已知函數(shù),對于任意都有,則的值為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.18.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學期望的最大值.19.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.20.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???22.(10分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.682
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.本題考查了根據(jù)幾何概型求面積,意在考查學生的計算能力和應用能力.2.D【解析】
根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).3.D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質建立方程求q是解題的關鍵,對于等比數(shù)列的通項公式也要熟練.4.A【解析】
令,進而求得,再轉化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關鍵,屬于中檔題.5.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.6.B【解析】
根據(jù)分段函數(shù),分當,,將問題轉化為的零點問題,用數(shù)形結合的方法研究.【詳解】當時,,令,在是增函數(shù),時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結合的思想和轉化問題的能力,屬于中檔題.7.A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.8.D【解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.9.D【解析】
根據(jù)題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節(jié)決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.本題考查推理證明的實際應用.10.D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎題。11.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.12.C【解析】
畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當x+y=2時,且x∈-13,1時,故選:C.本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.14.18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關于點對稱,結合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關于點對稱,,函數(shù)關于點對稱,所以兩個函數(shù)圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18本題考查了函數(shù)對稱性的應用,結合函數(shù)奇偶性以及分式函數(shù)的性質求出函數(shù)的對稱性是解決本題的關鍵,屬于中檔題.15.②③【解析】
根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.16.【解析】
由條件得到函數(shù)的對稱性,從而得到結果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達定理以及參數(shù)的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數(shù)分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.本題考查了簡單曲線的極坐標方程,屬中檔題.18.(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數(shù)學期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學期望的最大值為280.本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數(shù)學期望,考查計算能力.19.(1);(2)見解析.【解析】
(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調遞減,在上單調遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調遞增;又,,所以,使得,當時,;當時,,即在上單調遞減,在上單調遞增,且所以,即,所以,即.本題主要考查利用導數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調性的考查,同時考查轉化與化歸的思想,屬于中檔題.20.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調遞增,最小值為,當時,由得,且,當時,,單調遞減;當時,,單調遞增;所以在區(qū)間上單調遞增,最小值為,當時,則,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區(qū)間上單調遞增,當時,,即,故,即當時,恒有成立.本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題.21.(1);(2)當BP為cm時,α+β取得最小值.【解析】
(1)作AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 只分紅合同范本
- 家私維修合同范本
- 建筑物料合同范本
- 靖江市2026年校園公開招聘教師備考題庫必考題
- 2025年海南省郵政業(yè)安全保障中心招聘事業(yè)編制人員筆試筆試試題附答案解析
- 2026年知識百科競賽考試題庫80道含答案【輕巧奪冠】
- 佳木斯大學2026年公開招聘工作人員191人考試題庫新版
- 2024年江蘇城市職業(yè)學院馬克思主義基本原理概論期末考試題完美版
- 2026年法律職業(yè)資格之法律職業(yè)客觀題一考試題庫300道及答案【易錯題】
- 商業(yè)策劃師的面試題與解析全解
- 《恒X地產(chǎn)集團地區(qū)公司管理辦法》(16年12月發(fā)文版)
- 2025年10月自考00688設計概論試題及答案
- 六西格瑪設計實例
- 海南檳榔承包協(xié)議書
- 工業(yè)交換機產(chǎn)品培訓
- 2025浙江溫州市龍港市國有企業(yè)招聘產(chǎn)業(yè)基金人員3人筆試歷年備考題庫附帶答案詳解試卷3套
- 《十五五規(guī)劃》客觀測試題及答案解析(二十屆四中全會)
- 月子會所的禮儀培訓課件
- DB32-T 1086-2022 高速公路建設項目檔案管理規(guī)范
- 代碼開發(fā)安全培訓課件
- (2025年標準)科研資助經(jīng)費協(xié)議書
評論
0/150
提交評論