版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°2、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.3、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.4、若a是從“、0、1、2”這四個(gè)數(shù)中任取的一個(gè)數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.5、如圖,與的兩邊分別相切,其中OA邊與相切于點(diǎn)P.若,,則OC的長(zhǎng)為()A.8 B. C. D.6、下面四個(gè)立體圖形中,從正面看是三角形的是()A. B. C. D.7、如圖,將一個(gè)棱長(zhǎng)為3的正方體表面涂上顏色,把它分割成棱長(zhǎng)為1的小正方體,將它們?nèi)糠湃胍粋€(gè)不透明盒子中搖勻,隨機(jī)取出一個(gè)小正方體,有三個(gè)面被涂色的概率為()A. B. C. D.8、等邊三角形、等腰三角形、矩形、菱形中既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的個(gè)數(shù)是()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在平面直角坐標(biāo)系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進(jìn)行下去,得到Rt△OA2A3,Rt△OA3A4…,若點(diǎn)A0的坐標(biāo)是(1,0),則點(diǎn)A2021的橫坐標(biāo)是___________.2、如圖,正方形ABCD是邊長(zhǎng)為2,點(diǎn)E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=DF,連接BE、CF,BE與對(duì)角線AC交于點(diǎn)G,連接DG交CF于點(diǎn)H,連接BH,則BH的最小值為_(kāi)______.3、如圖,在平面直角坐標(biāo)系xOy中,P為x軸正半軸上一點(diǎn).已知點(diǎn),,為的外接圓.(1)點(diǎn)M的縱坐標(biāo)為_(kāi)_____;(2)當(dāng)最大時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.4、在平面直角坐標(biāo)系中,將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是___________.5、如圖,PA是⊙O的切線,A是切點(diǎn).若∠APO=25°,則∠AOP=___________°.6、在平面直角坐標(biāo)系中,點(diǎn),圓C與x軸相切于點(diǎn)A,過(guò)A作一條直線與圓交于A,B兩點(diǎn),AB中點(diǎn)為M,則OM的最大值為_(kāi)_____.7、如圖,半圓O中,直徑AB=30,弦CD∥AB,長(zhǎng)為6π,則由與AC,AD圍成的陰影部分面積為_(kāi)______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖1,圖2,圖3的網(wǎng)格均由邊長(zhǎng)為1的小正方形組成,圖1是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個(gè)形狀、大小完全相同的直角三角形組成,趙爽利用這個(gè)“弦圖”對(duì)勾股定理作出了證明,是中國(guó)古代數(shù)學(xué)的一項(xiàng)重要成就,請(qǐng)根據(jù)下列要求解答問(wèn)題.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是對(duì)稱圖形(填“軸”或“中心”).(2)請(qǐng)將“弦圖”中的四個(gè)直角三角形通過(guò)你所學(xué)過(guò)的圖形變換,在圖2,3的方格紙中設(shè)計(jì)另外兩個(gè)不同的圖案,畫(huà)圖要求:①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形互不重疊,不必涂陰影;②圖2中所設(shè)計(jì)的圖案(不含方格紙)必須是軸對(duì)稱圖形而不是中心對(duì)稱圖形;圖3中所設(shè)計(jì)的圖案(不含方格紙)必須既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.2、在等邊中,是邊上一動(dòng)點(diǎn),連接,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°,得到,連接.(1)如圖1,當(dāng)、、三點(diǎn)共線時(shí),連接,若,求的長(zhǎng);(2)如圖2,取的中點(diǎn),連接,猜想與存在的數(shù)量關(guān)系,并證明你的猜想;(3)如圖3,在(2)的條件下,連接、交于點(diǎn).若,請(qǐng)直接寫(xiě)出的值.3、如圖,在中,AB是直徑,弦EF∥AB.(1)請(qǐng)僅用無(wú)刻度的直尺畫(huà)出劣弧EF的中點(diǎn)P;(保留作圖痕跡,不寫(xiě)作法)(2)在(1)的條件下,連接OP交EF于點(diǎn)Q,,,求PQ的長(zhǎng)度.4、在正方形ABCD中,過(guò)點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過(guò)點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫(xiě)出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫(xiě)出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫(xiě)出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過(guò)程中當(dāng)時(shí),請(qǐng)直接寫(xiě)出EH的長(zhǎng).5、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點(diǎn)E,并與AM,BN分別相交于D,C兩點(diǎn).設(shè),,求y關(guān)于x的函數(shù)解析式.6、如圖,在⊙O中,點(diǎn)E是弦CD的中點(diǎn),過(guò)點(diǎn)O,E作直徑AB(AE>BE),連接BD,過(guò)點(diǎn)C作CFBD交AB于點(diǎn)G,交⊙O于點(diǎn)F,連接AF.求證:AG=AF.7、如圖,已知弓形的長(zhǎng),弓高,(,并經(jīng)過(guò)圓心O).(1)請(qǐng)利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長(zhǎng).-參考答案-一、單選題1、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.2、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來(lái)考慮整體形狀.3、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計(jì)算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點(diǎn)睛】本題考查了扇形的面積,等邊三角形等知識(shí).解題的關(guān)鍵在于用扇形表示陰影面積.4、B【分析】根據(jù)一元二次方程的定義,二次項(xiàng)系數(shù)不為0,四個(gè)數(shù)中有一個(gè)1不能取,a是從“、0、1、2”這四個(gè)數(shù)中任取的一個(gè)數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計(jì)算即可.【詳解】解:當(dāng)a=1時(shí)于x的方程不是一元二次方程,其它三個(gè)數(shù)都是一元二次方程,a是從“、0、1、2”這四個(gè)數(shù)中任取的一個(gè)數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點(diǎn)睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.5、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長(zhǎng)定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點(diǎn),∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點(diǎn)睛】本題主要考查了切線的性質(zhì),切線長(zhǎng)定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長(zhǎng)定理是解題的關(guān)鍵.6、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長(zhǎng)方形,不符合題意.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),主視圖是從物體的正面看得到的視圖.7、B【分析】直接根據(jù)題意得出恰有三個(gè)面被涂色的有8個(gè),再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個(gè),恰有三個(gè)面被涂色的為棱長(zhǎng)為3的正方體頂點(diǎn)處的8個(gè)小正方體;故取得的小正方體恰有三個(gè)面被涂色.的概率為.故選:B.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,正確得出三個(gè)面被涂色.小立方體的個(gè)數(shù)是解題關(guān)鍵.8、A【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;等邊三角形、等腰三角形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意;共2個(gè)既是軸對(duì)稱圖形又是中心對(duì)稱圖形.故選:A.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.(1)如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸.(2)如果一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°后能夠與自身重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心.二、填空題1、22020【分析】根據(jù),,點(diǎn)的坐標(biāo)是,得,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是-,同理可得點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,點(diǎn)的橫坐標(biāo)是,依次進(jìn)行下去,可得點(diǎn)的橫坐標(biāo),進(jìn)而求得的橫坐標(biāo).【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點(diǎn)A0的坐標(biāo)是(1,0),∴OA0=1,∴點(diǎn)A1的橫坐標(biāo)是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點(diǎn)A2的橫坐標(biāo)是-OA2=-2=-21,依次進(jìn)行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點(diǎn)A3的橫坐標(biāo)是﹣2OA2=﹣8=﹣23,點(diǎn)A4的橫坐標(biāo)是﹣8=﹣23,點(diǎn)A5的橫坐標(biāo)是OA5=×2OA4=2OA3=4OA2=16=24,點(diǎn)A6的橫坐標(biāo)是2OA5=2×2OA4=23OA3=64=26,點(diǎn)A7的橫坐標(biāo)是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點(diǎn)A2021的橫坐標(biāo)與的坐標(biāo)規(guī)律一致是22020.故答案為:22020.【點(diǎn)睛】本題考查了規(guī)律型——點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是理解動(dòng)點(diǎn)的運(yùn)動(dòng)過(guò)程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點(diǎn)A3n在軸上,且坐標(biāo)為.2、##【分析】延長(zhǎng)AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點(diǎn),取AB中點(diǎn)O,連接OD,OH,根據(jù)三角形的三邊關(guān)系可得不等式,可解得DH長(zhǎng)度的最小值.【詳解】解:延長(zhǎng)AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點(diǎn)H是以AB為直徑的圓上一點(diǎn).如圖2,取AB中點(diǎn)O,連接OD,OH,∵AB=AD=2,O是AB中點(diǎn),∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關(guān)鍵是證點(diǎn)H是以AB為直徑的圓上一點(diǎn).3、5(4,0)【分析】(1)根據(jù)點(diǎn)M在線段AB的垂直平分線上求解即可;(2)點(diǎn)P在⊙M切點(diǎn)處時(shí),最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點(diǎn)M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點(diǎn)M的縱坐標(biāo)為:,故答案為:5;(2)過(guò)點(diǎn),,作⊙M與x軸相切,則點(diǎn)M在切點(diǎn)處時(shí),最大,理由:若點(diǎn)是x軸正半軸上異于切點(diǎn)P的任意一點(diǎn),設(shè)交⊙M于點(diǎn)E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點(diǎn)P在切點(diǎn)處時(shí),∠APB最大,∵⊙M經(jīng)過(guò)點(diǎn)A(0,2)、B(0,8),∴點(diǎn)M在線段AB的垂直平分線上,即點(diǎn)M在直線y=5上,∵⊙M與x軸相切于點(diǎn)P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設(shè)AB的中點(diǎn)為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點(diǎn)P的坐標(biāo)為(4,0),故答案為:(4,0).【點(diǎn)睛】本題考查了切線的性質(zhì),線段垂直平分線的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關(guān)鍵.4、【分析】繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)即關(guān)于原點(diǎn)中心對(duì)稱,找到關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)即可,根據(jù)關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是故答案為:【點(diǎn)睛】本題考查了求一個(gè)點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)特征是解題的關(guān)鍵.關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù).5、65【分析】根據(jù)切線的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計(jì)算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點(diǎn)睛】本題考查的是切線的性質(zhì)、直角三角形的性質(zhì),掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.6、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn),先求出A點(diǎn)坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時(shí),OM也最小,即當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn)∵點(diǎn)C的坐標(biāo)為(2,2),圓C與x軸相切于點(diǎn)A,∴點(diǎn)A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點(diǎn),又∵M(jìn)是AB的中點(diǎn),∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時(shí),OM也最小,∴當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,一點(diǎn)到圓上一點(diǎn)的距離得到最小值,兩點(diǎn)距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.7、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來(lái)求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長(zhǎng)為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點(diǎn)睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.三、解答題1、(1)中心(2)見(jiàn)解析【分析】(1)利用中心對(duì)稱圖形的意義得到答案即可;(2)①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形不重疊,是軸對(duì)稱圖形;②所設(shè)計(jì)的圖案(不含方格紙)必須是中心對(duì)稱圖形或軸對(duì)稱圖形.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是中心對(duì)稱圖形,故答案為:中心;(2)如圖2是軸對(duì)稱圖形而不是中心對(duì)稱圖形;圖3既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)或軸對(duì)稱設(shè)計(jì)方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對(duì)稱的概念,按要求作圖即可.2、(1);(2);證明見(jiàn)解析;(3)【分析】(1)過(guò)點(diǎn)作于點(diǎn),根據(jù)等邊三角形的性質(zhì)與等腰的性質(zhì)以及勾股定理求得,進(jìn)而求得,在中,,,勾股定理即可求解;(2)延長(zhǎng)至,使得,連接,過(guò)點(diǎn)作,交于點(diǎn),根據(jù)平行四邊形的性質(zhì)可得,,證明是等邊三角形,進(jìn)而證明,即可證明是等邊三角形,進(jìn)而根據(jù)三線合一以及含30度角的直角三角形的性質(zhì),可得;(3)過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作,連接,交于點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),先證明,結(jié)合中位線定理可得,進(jìn)而可得,設(shè),分別勾股定理求得,進(jìn)而根據(jù)求得,即可求得的值【詳解】(1)過(guò)點(diǎn)作于點(diǎn),如圖將繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°,得到,是等邊三角形,,在中,,(2)如圖,延長(zhǎng)至,使得,連接,過(guò)點(diǎn)作,交于點(diǎn),點(diǎn)是的中點(diǎn)又四邊形是平行四邊形,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°,得到,是等邊三角形,,是等邊三角形設(shè),則,,,是等邊三角形,即(3)如圖,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作,連接,交于點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),四點(diǎn)共圓由(2)可知,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°,得到,是的中點(diǎn),是的中位線是等腰直角三角形四邊形是矩形,設(shè)在中,,在中,在中【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理,同弧所對(duì)的圓周角相等,四點(diǎn)共圓,三角形全等的性質(zhì)與判定,等腰三角形的性質(zhì)與判定;掌握旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.3、(1)見(jiàn)解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點(diǎn)P,點(diǎn)P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進(jìn)一步計(jì)算即可求解.(1)解:如圖中,點(diǎn)P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長(zhǎng)度為1.【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì),垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、(1)①;②;(2);證明見(jiàn)解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過(guò)點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過(guò)點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過(guò)點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過(guò)點(diǎn)C作交BE于點(diǎn)M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產(chǎn)督查督導(dǎo)制度
- 家具安全生產(chǎn)獎(jiǎng)罰制度
- 以敬畏立心以行止致遠(yuǎn)-2026年河南省金太陽(yáng)高三年級(jí)語(yǔ)文第三次聯(lián)考作文講評(píng) 課件
- 罕見(jiàn)病藥物短缺應(yīng)對(duì)策略研究
- 校俱樂(lè)部活動(dòng)策劃方案(3篇)
- 吉林普通高中友好學(xué)校聯(lián)合體2025-2026學(xué)年高一上學(xué)期期末考試政治試題
- 反隱身技術(shù)教學(xué)課件
- 2026廣東深圳大學(xué)深圳醫(yī)療保障研究院誠(chéng)聘研究助理1名備考題庫(kù)及一套答案詳解
- 2026中央檔案館國(guó)家檔案局所屬事業(yè)單位招聘工作人員1人備考題庫(kù)及參考答案詳解一套
- 2026“夢(mèng)想靠岸”招商銀行溫州分行校園招聘?jìng)淇碱}庫(kù)及參考答案詳解
- 智慧城市建設(shè)技術(shù)標(biāo)準(zhǔn)規(guī)范
- 2026中國(guó)單細(xì)胞測(cè)序技術(shù)突破與商業(yè)化應(yīng)用前景報(bào)告
- EPC總承包項(xiàng)目管理組織方案投標(biāo)方案(技術(shù)標(biāo))
- 過(guò)年留人激勵(lì)方案
- 除草機(jī)安全培訓(xùn)總結(jié)課件
- 人才發(fā)展手冊(cè)
- 師德師風(fēng)培訓(xùn)材料
- 叉車初級(jí)資格證考試試題與答案
- 2025年中國(guó)醫(yī)學(xué)科學(xué)院研究所招聘面試高頻問(wèn)題答案與解析
- 2025至2030中國(guó)新癸酸縮水甘油酯行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評(píng)估報(bào)告
- 剪映完整課件
評(píng)論
0/150
提交評(píng)論