版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.2、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°3、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是()A. B. C. D.4、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.5、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°6、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.7、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.8、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.2、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.3、一個五邊形共有__________條對角線.4、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.5、在平面直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)是______.6、如圖,在平面直角坐標(biāo)系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進行下去,得到Rt△OA2A3,Rt△OA3A4…,若點A0的坐標(biāo)是(1,0),則點A2021的橫坐標(biāo)是___________.7、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計0分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時,直接出的值.2、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內(nèi)的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標(biāo);(2)畫出以點為中心,旋轉(zhuǎn)180°后的,并求的面積.3、如圖,點A是外一點,過點A作出的一條切線.(使用尺規(guī)作圖,作出一條即可,不要求寫出作法,不要求證明,但要保留作圖痕跡)4、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其他都相同,搖獎?wù)弑仨殢膿u獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當(dāng)天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.5、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標(biāo);(2)如圖1,點C在y軸右側(cè)的拋物線上,且AC=BC,求點C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉(zhuǎn)90°后,得到△DEF(點A,B,O的對應(yīng)點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標(biāo);②直接寫出點P的坐標(biāo).6、已知,P是直線AB上一動點(不與A,B重合),以P為直角頂點作等腰直角三角形PBD,點E是直線AD與△PBD的外接圓除點D以外的另一個交點,直線BE與直線PD相交于點F.(1)如圖,當(dāng)點P在線段AB上運動時,若∠DBE=30°,PB=2,求DE的長;(2)當(dāng)點P在射線AB上運動時,試探求線段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.7、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學(xué)同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學(xué)聯(lián)系.(1)用恰當(dāng)?shù)姆椒信e出甲、乙兩位同學(xué)選擇溝通方式的所有可能;(2)求甲、乙兩位同學(xué)恰好選擇同一種溝通方式的概率.-參考答案-一、單選題1、B【分析】根據(jù)隨機擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.2、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.3、C【分析】過點A作AC⊥x軸于點C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標(biāo)是.故選:C【點睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點A的坐標(biāo),屬于中考??碱}型.4、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應(yīng)了空間幾何體的長度和寬度是解題的關(guān)鍵.5、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.6、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.7、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.8、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.二、填空題1、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了勾股定理.2、【分析】抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點數(shù)小于5的概率.【詳解】解:∵抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點數(shù)小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.4、【分析】先畫樹狀圖列出所有等可能結(jié)果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.5、(3,4)【分析】關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關(guān)于原點對稱的點的坐標(biāo)是(3,4),故答案為:(3,4).【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).6、22020【分析】根據(jù),,點的坐標(biāo)是,得,點的橫坐標(biāo)是,點的橫坐標(biāo)是-,同理可得點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,點的橫坐標(biāo)是,依次進行下去,可得點的橫坐標(biāo),進而求得的橫坐標(biāo).【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點A0的坐標(biāo)是(1,0),∴OA0=1,∴點A1的橫坐標(biāo)是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點A2的橫坐標(biāo)是-OA2=-2=-21,依次進行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點A3的橫坐標(biāo)是﹣2OA2=﹣8=﹣23,點A4的橫坐標(biāo)是﹣8=﹣23,點A5的橫坐標(biāo)是OA5=×2OA4=2OA3=4OA2=16=24,點A6的橫坐標(biāo)是2OA5=2×2OA4=23OA3=64=26,點A7的橫坐標(biāo)是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點A2021的橫坐標(biāo)與的坐標(biāo)規(guī)律一致是22020.故答案為:22020.【點睛】本題考查了規(guī)律型——點的坐標(biāo),解決本題的關(guān)鍵是理解動點的運動過程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點A3n在軸上,且坐標(biāo)為.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題.三、解答題1、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點共圓,同弧所對圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關(guān)鍵.2、(1)圖見解析,點的坐標(biāo)為(2)圖見解析,4【分析】(1)根據(jù)題意,腰長為無理數(shù)且為以AB為底的等腰三角形,只在第二象限,作圖即可確定點,然后寫出點的坐標(biāo)即可;(2)現(xiàn)確定旋轉(zhuǎn)后的點,然后依次連接即可,根據(jù)旋轉(zhuǎn)前后三角形的面積不變,利用表格及勾股定理確定三角形的底和高,即可得出面積.(1)解:如圖所示,點的坐標(biāo)為;,為無理數(shù),符合題意;(2)如圖所示:點的坐標(biāo),點的坐標(biāo)為,∵旋轉(zhuǎn)180°后的的面積等于的面積,,∴,∴的面積為4.【點睛】題目主要考查等腰三角形的定義及旋轉(zhuǎn)圖形的作法,理解題意,熟練掌握在坐標(biāo)系中旋轉(zhuǎn)圖形的作法是解題關(guān)鍵.3、見解析【分析】先作線段的垂直平分線.確定的中點,再以中點為圓心,一半為半徑作圓交于點,然后作直線,則根據(jù)圓周角定理可得為所求.【詳解】如圖,直線AB就是所求作的,(作法不唯一,作出一條即可,需要有作圖痕跡)【點睛】本題考查了作圖復(fù)雜作圖,解題的關(guān)鍵是掌握復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.4、(1)搖出一紅一白的概率=(2)選擇甲品牌化妝品,理由見解析【分析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應(yīng)的平均收益,比較即可.(1)解:樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,搖出一紅一白的概率=;(2)(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴甲品牌化妝品獲禮金券的平均收益是:×6+×12+×6=10元.乙品牌化妝品獲禮金券的平均收益是:×12+×6+×12=8元.∴選擇甲品牌化妝品.【點睛】本題主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、(1)A(-1,0),B(0,2);(2)點C的坐標(biāo)(,);(3)①求點F的坐標(biāo)(1,2);②點P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點B的坐標(biāo);令y=0,求得x的值,取較小的一個即求A點的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側(cè)的拋物線上,∴,此時y=,∴點C的坐標(biāo)(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標(biāo)為(1,2);②如圖,設(shè)拋物線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽大學(xué)文學(xué)院高層次人才招聘備考題庫附答案詳解ab卷
- 2025年全科醫(yī)學(xué)全科醫(yī)生常見疾病診治能力考核試題及答案解析
- 二次灌漿要求
- 2026年服裝行業(yè)智能紡織技術(shù)報告及個性化定制趨勢報告
- 2026年海洋能發(fā)電公司員工考勤與休假管理制度
- 2026年海洋能發(fā)電公司發(fā)電運營進度調(diào)度管理制度
- 杜甫《丹青引贈曹霸將軍》注音版及注釋
- 掃描系統(tǒng)集成-洞察與解讀
- ZKP身份匿名驗證-洞察與解讀
- 免疫缺陷伴發(fā)真菌感染的治療挑戰(zhàn)-洞察與解讀
- 2026貴州貴陽市安航機械制造有限公司招聘8人考試重點試題及答案解析
- 2026重慶高新開發(fā)建設(shè)投資集團招聘3人備考考試試題及答案解析
- 2026年度宣城市宣州區(qū)森興林業(yè)開發(fā)有限公司第一批次員工公開招聘筆試參考題庫及答案解析
- 老年人管理人員培訓(xùn)制度
- 2025年湖南常德市鼎城區(qū)面向全市選調(diào)8名公務(wù)員備考題庫及答案詳解(新)
- 2026年高考時事政治時事政治考試題庫及答案(名校卷)
- 2026年新能源汽車動力電池回收體系構(gòu)建行業(yè)報告
- 2026年空天科技衛(wèi)星互聯(lián)網(wǎng)應(yīng)用報告及未來五至十年全球通信創(chuàng)新報告
- 2026四川成都市錦江區(qū)國有企業(yè)招聘18人筆試備考試題及答案解析
- 2025學(xué)年度人教PEP五年級英語上冊期末模擬考試試卷(含答案含聽力原文)
- 2025年上海市普通高中學(xué)業(yè)水平等級性考試地理試卷(含答案)
評論
0/150
提交評論