解析卷-人教版8年級數(shù)學下冊《平行四邊形》綜合訓練練習題(詳解)_第1頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》綜合訓練練習題(詳解)_第2頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》綜合訓練練習題(詳解)_第3頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》綜合訓練練習題(詳解)_第4頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》綜合訓練練習題(詳解)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.132、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點,AB的長為10,則DC的長為()A.5 B.4 C.3 D.23、如圖,正方形的面積為256,點F在上,點E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.154、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.5、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,平面直角坐標系中,有,,三點,以A,B,O三點為頂點的平行四邊形的另一個頂點D的坐標為______.2、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.3、如圖,為了測量池塘兩岸A,B兩點之間的距離,可在AB外選一點C,連接AC和BC,再分別取AC、BC的中點D,E,連接DE并測量出DE的長,即可確定A、B之間的距離.若量得DE=15m,則A、B之間的距離為__________m4、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長為__________________.5、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.三、解答題(5小題,每小題10分,共計50分)1、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標系,在CD邊上取一點E,將△ADE沿AE翻折,點D恰好落在BC邊上的點F處.(1)求線段EF長;(2)在平面內(nèi)找一點G,①使得以A、B、F、G為頂點的四邊形是平行四邊形,請直接寫出點G的坐標;②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個單位,若以A、O、F、G為頂點的四邊形為菱形,請求出m的值并寫出點G的坐標.2、如圖,在?ABCD中,對角線AC的垂直平分線EF交AD于點F,交BC于點E,交AC于點O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評析)小海利用對角線互相平分證明了四邊形AECF是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.(挑錯改錯)(1)請你幫小海找出錯誤的原因;(2)請你根據(jù)小海的思路寫出此題正確的證明過程.

3、如圖,在?ABCD中,對角線AC,BD交于點O,E是BD延長線上一點,且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.4、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.5、如圖,是的中位線,延長到,使,連接.求證:.

-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.2、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點,∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.3、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計算CE,根據(jù)正方形ABCD的面積計算BC,根據(jù)勾股定理計算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因為Rt△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點睛】本題考查了正方形,等腰直角三角形面積的計算,考查了直角三角形中勾股定理的運用,本題中求證CF=CE是解題的關(guān)鍵.4、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.二、填空題1、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標相等,根據(jù)B的橫坐標和BO的值即可求出D的橫坐標.【詳解】∵平行四邊形ABCD的頂點A、B、O的坐標分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標是3+6=9,縱坐標是4,即D的坐標是(9,4),同理可得出D的坐標還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點睛】本題考查了坐標與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對邊平行且相等.2、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.3、30【解析】【分析】根據(jù)三角形中位線的性質(zhì)解答即可.【詳解】解:∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=30m.故填30.【點睛】本題主要考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊且等于第三邊的一半是解答本題的關(guān)鍵.4、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當以AB、BC為直角邊作等腰直角三角形時,與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進行分類討論是解題的關(guān)鍵.5、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.三、解答題1、(1)103;(2)①點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當AB為平行四邊形的對角線時;當AF為平行四邊形的對角線時;當BF為平行四邊形的對角線時,分別求解點G的坐標即可;②分三種情況討論,當OF為對角線時,由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當AO為菱形的對角線時,當AF為菱形的對角線時,結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當AB為平行四邊形的對角線時,AG=BF=8,AG∥∴點G的坐標為:(﹣8,6);當AF為平行四邊形的對角線時,AG'=BF=8,AG'∥∴點G'的坐標為:(8,6);當BF為平行四邊形的對角線時,F(xiàn)G''=AB=6,F(xiàn)G''∥∴點G''的坐標為:(8,﹣6);綜上所述,點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當OF為菱形的對角線時,∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設(shè)FG交x軸于H,如圖所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四邊形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴點G的坐標為:(8,﹣6).如圖,當AO為菱形的對角線時,則AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(?8,6).如圖,當AF為菱形的對角線時,同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+綜上:平移距離m與G的坐標分別為:m=4,G(8,?6)或m=6,G(?8,6)或m=7【點睛】本題是四邊形綜合題目,考查了矩形的判定與性質(zhì)、菱形的判定與性質(zhì),坐標與圖形性質(zhì)、平行四邊形的性質(zhì)、勾股定理、折疊變換的性質(zhì)、平移的性質(zhì)等知識;熟練掌握矩形的性質(zhì)和折疊的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)見解析【分析】(1)由垂直平分線的性質(zhì)可求解;(2)由“”可證,可得,且,,由菱形的判定可證四邊形是菱形.【詳解】解:(1)是的垂直平分線,,,不能得出;(2)四邊形是平行四邊形,.是的垂直平分線,,,且,,且四邊形是平行四邊形.四邊形是菱形.【點睛】本題考查了菱形的判定,全等三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),平行四邊形的性質(zhì),解題的關(guān)鍵是熟練運用線段垂直平分線的性質(zhì).3、(1)見解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,∵△ACE是等邊三角形,∴EO⊥AC(三線合一),即BD⊥AC,∴?ABCD是菱形;(2)解:∵△ACE是等邊三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵?ABCD是菱形,∴∠BA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論