考點解析-滬科版9年級下冊期末試題(歷年真題)附答案詳解_第1頁
考點解析-滬科版9年級下冊期末試題(歷年真題)附答案詳解_第2頁
考點解析-滬科版9年級下冊期末試題(歷年真題)附答案詳解_第3頁
考點解析-滬科版9年級下冊期末試題(歷年真題)附答案詳解_第4頁
考點解析-滬科版9年級下冊期末試題(歷年真題)附答案詳解_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數(shù)字,0,2,從中隨機(jī)抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同2、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.3、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個球,這個球是白球的概率是()A. B. C. D.4、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.5、下列說法錯誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生6、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.7、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨8、如圖,A,B,C是正方形網(wǎng)格中的三個格點,則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、AB是的直徑,點C在上,,點P在線段OB上運動.設(shè),則x的取值范圍是________.2、《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點P逆時針旋轉(zhuǎn)90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.4、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.5、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.6、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.7、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為______.三、解答題(7小題,每小題0分,共計0分)1、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)2、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設(shè)計方案中的一部分.(1)請把圖①、圖②補(bǔ)成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補(bǔ)成只是中心對稱圖形,并把中心標(biāo)上字母P.3、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學(xué)、外語三個學(xué)科為必選科目;“1”為首選科目,即:物理、歷史這2個學(xué)科中任選1科,且必須選1科;“2”為再選科目,即:化學(xué)、生物、思想政治、地理這4個學(xué)科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學(xué)科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學(xué)科的概率.4、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標(biāo)).5、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補(bǔ)全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.6、在平面直角坐標(biāo)系中,的三個頂點坐標(biāo)分別為.(每個方格的邊長均為1個單位長度)(1)畫出關(guān)于原點對稱的圖形,并寫出點的坐標(biāo);(2)畫出繞點O逆時針旋轉(zhuǎn)后的圖形,并寫出點的坐標(biāo);(3)寫出經(jīng)過怎樣的旋轉(zhuǎn)可直接得到.(請將20題(1)(2)小問的圖都作在所給圖中)7、在等邊中,是邊上一動點,連接,將繞點順時針旋轉(zhuǎn)120°,得到,連接.(1)如圖1,當(dāng)、、三點共線時,連接,若,求的長;(2)如圖2,取的中點,連接,猜想與存在的數(shù)量關(guān)系,并證明你的猜想;(3)如圖3,在(2)的條件下,連接、交于點.若,請直接寫出的值.-參考答案-一、單選題1、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項不符合題意;故選:A.【點睛】此題考查了列樹狀圖求事件的概率,概率的計算公式,正確列出樹狀圖解答是解題的關(guān)鍵.2、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.3、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.4、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.5、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項.【詳解】解:A.必然事件發(fā)生的概率是1,故該選項正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項正確,不符合題意;C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1,故該選項正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項不正確,符合題意;故選D【點睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大?。罕厝话l(fā)生的事件發(fā)生的概率為1,隨機(jī)事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.6、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.7、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機(jī)事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.8、B【分析】根據(jù)三點確定一個圓,圓心的確定方法:任意兩點中垂線的交點為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點就是圓心.故選:B.【點睛】本題考查已知圓上三點求圓心,取任意兩條線段中垂線交點確定圓心是解題關(guān)鍵.二、填空題1、【分析】分別求出當(dāng)點P與點O重合時,當(dāng)點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當(dāng)點P與點O重合時,∵OA=OC,∴,即;當(dāng)點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運動位置是解題的關(guān)鍵.2、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;3、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點.解題的關(guān)鍵在于表示出正切中線段的長度.4、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.5、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點,進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.6、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點D的運動軌跡.7、110°【分析】根據(jù)圓內(nèi)接四邊形對角互補(bǔ),得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對角互補(bǔ),∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內(nèi)接四邊形互補(bǔ)的性質(zhì),熟練掌握并運用性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)(2)此游戲公平,理由見解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列舉出所有可能,進(jìn)而利用概率公式進(jìn)而得出甲、乙獲勝的概率即可得出答案.(1)解:第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為,故答案為:.(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12種等可能結(jié)果,其中結(jié)果為非負(fù)數(shù)的有6種結(jié)果,結(jié)果為負(fù)數(shù)的有6種結(jié)果,所以甲獲勝的概率=乙獲勝的概率==,∴此游戲公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個參與者取勝的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)見解析(2)見解析【分析】(1)根據(jù)軸對稱圖形,中心對稱圖形的性質(zhì)畫出圖形即可.(2)根據(jù)中心對稱圖形的定義畫出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點P即為所求作.【點睛】本題考查利用旋轉(zhuǎn)變換設(shè)計圖案,正方形的性質(zhì),軸對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.3、(1)(2)【分析】(1)根據(jù)概率的公式計算可得答案;(2)畫樹狀圖,共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理化兩科的結(jié)果有2個,再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結(jié)果,選擇歷史學(xué)科的結(jié)果有1種,所以選擇歷史學(xué)科的概率是;(2)假設(shè)A表示化學(xué)、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理的結(jié)果有2個,所以該同學(xué)恰好選中思想政治和地理的概率為.【點睛】此題考查了概率的求法,利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,還考查了用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,做題的關(guān)鍵是掌握概率的求法.4、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關(guān)于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點C中心對稱的點A'(-1,-3),B關(guān)于點C中心對稱的點B'(1,-1),C關(guān)于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、(1)見解析;(2)(3)【分析】(1)根據(jù)題意補(bǔ)全圖形即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,進(jìn)而證明,可得,根據(jù)角度的轉(zhuǎn)換可得,進(jìn)而根據(jù)三角形的外角性質(zhì)即可證明;(3)過點作,證明,進(jìn)而根據(jù)勾股定理以及線段的轉(zhuǎn)換即可得到(1)如圖,(2)將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,,,又即(3)證明如下,如圖,過點作,又,又,即【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的性質(zhì)與判定,勾股定理,等腰三角形的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論