2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題_第1頁
2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題_第2頁
2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題_第3頁
2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題_第4頁
2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆福建省龍巖市連城縣第一中學數(shù)學高三上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程為()A. B. C. D.2.函數(shù)的定義域為,集合,則()A. B. C. D.3.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.4.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.15.已知復數(shù),則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.7.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.8.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.9.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.10.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.11.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.12.設為定義在上的奇函數(shù),當時,(為常數(shù)),則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_____.14.在中,內角的對邊分別是,若,,則____.15.已知函數(shù)函數(shù),則不等式的解集為____.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.18.(12分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設數(shù)列的前n項和為,數(shù)列的前n項和為證明:.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.22.(10分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

將點代入解析式確定參數(shù)值,結合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.2.A【解析】

根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎題.3.B【解析】

求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.4.B【解析】

根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.5.A【解析】

利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎題.6.C【解析】

求導分析函數(shù)在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數(shù)在單調遞增,在單調遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質,屬于難題.7.B【解析】

選B.考點:圓心坐標8.A【解析】

用排除法,通過函數(shù)圖像的性質逐個選項進行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A本題考查了函數(shù)圖像的性質,屬于中檔題.9.C【解析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.10.C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.11.D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.12.D【解析】

由可得,所以,由為定義在上的奇函數(shù)結合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調遞增,注意到,再利用函數(shù)單調性即可解決.【詳解】因為在上是奇函數(shù).所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.本題考查利用函數(shù)的奇偶性、單調性解不等式,考查學生對函數(shù)性質的靈活運用能力,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.14.【解析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.15.【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉化為分段函數(shù)處理。16.【解析】

由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.本題考查了同角三角函數(shù)基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】

(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.18.(1)①見解析,②見解析;(2)見解析【解析】

(1)①把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導數(shù)研究函數(shù)的單調性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數(shù)可得當時,在上單調遞減,當,時,在,上單調遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調遞減,當,時,,在,上單調遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調遞減,又,,.在上單調遞增,.本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調性,考查邏輯思維能力與推理論證能力,屬難題.19.(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌20.(1)(2)證明見解析【解析】

(1)因為,所以,所以,即,又因為,所以數(shù)列為等差數(shù)列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數(shù)列的前n項和為,則兩式相減得,所以,設則,所以.21.(1)(2)【解析】

(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【詳解】解:(1)設等比數(shù)列的公比為又因為,所以解得(舍)或所以,即(2)據(jù)(1)求解知,,所以所以本題考查求等比數(shù)列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務必掌握.22.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論