版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年山東歷城二中高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.2.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.3.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.454.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.5.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.86.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2337.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.8.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.49.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-210.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值11.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.12.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實部為____________.14.若,則________,________.15.在的展開式中,常數(shù)項為________.(用數(shù)字作答)16.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.18.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.19.(12分)[選修45:不等式選講]已知都是正實數(shù),且,求證:.20.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.2.A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.3.B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.4.C【解析】
利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.5.B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B本小題主要考查古典概型的計算,屬于基礎(chǔ)題.6.C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.7.A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.本題考查復(fù)數(shù)的除法運算,考查學(xué)生運算能力,是一道容易題.8.C【解析】
計算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C本題主要考查了復(fù)數(shù)的運算,共軛復(fù)數(shù)的概念.9.B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.10.B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.11.A【解析】
根據(jù)焦點到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點到漸近線的距離為,屬基礎(chǔ)題.12.D【解析】
如圖所示建立直角坐標系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設(shè),則.當,即時等號成立.故選:.本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運算計算即可得到答案.【詳解】,所以復(fù)數(shù)的實部為2.故答案為:2本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.14.【解析】
根據(jù)誘導(dǎo)公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.本題考查了誘導(dǎo)公式和二倍角公式,屬于簡單題.15.【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.本題考查了二項式定理,意在考查學(xué)生的計算能力.16.【解析】
利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:本小題主要考查累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當時,取得極小值也是最小值,即AB取得最小值此時.本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題.18.(1)不是,見解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當時,,與①式對應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當時,①②兩式對應(yīng)任意恒成立,所以數(shù)列的通項公式為.本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.19.見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式20.(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大小;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運算能力.21.(1)(2)證明見解析【解析】
(1)設(shè)橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據(jù)題意可知,,因為,所以可設(shè)直線CD的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年農(nóng)業(yè)國際公關(guān)服務(wù)合同
- 2026年醫(yī)院古醫(yī)療云計算模型館合作合同
- 2025年全國性網(wǎng)絡(luò)安全服務(wù)平臺建設(shè)項目可行性研究報告
- 2025年高校在線學(xué)習(xí)平臺搭建項目可行性研究報告
- 2025年新型替代蛋白質(zhì)研發(fā)項目可行性研究報告
- 2025年健身產(chǎn)業(yè)數(shù)字化轉(zhuǎn)型項目可行性研究報告
- 紋身定金合同范本
- 做監(jiān)理合同協(xié)議
- 福建省百校2026屆高三上學(xué)期12月聯(lián)合測評英語試卷(含答案詳解)
- 程序設(shè)計崗位面試要點及參考答案
- 醫(yī)學(xué)科研誠信專項培訓(xùn)
- 電力通信培訓(xùn)課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導(dǎo)原則
- 軟骨肉瘤護理查房
- 高級生物化學(xué)知識要點詳解
- 肌電圖在周圍神經(jīng)病中的應(yīng)用
- 2025春季學(xué)期國開電大??啤独砉び⒄Z1》一平臺機考真題及答案(第五套)
- GB/T 45683-2025產(chǎn)品幾何技術(shù)規(guī)范(GPS)幾何公差一般幾何規(guī)范和一般尺寸規(guī)范
- CJ/T 107-2013城市公共汽、電車候車亭
- 可靠性測試標準試題及答案
評論
0/150
提交評論