版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南開封市金明中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°2、如圖,已知△ABC,下面甲、乙、丙、丁四個三角形中,與△ABC全等的是()A. B.C. D.3、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG4、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、65、如圖,E為線段BC上一點(diǎn),∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.66、下列條件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E7、如圖,工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學(xué)依據(jù)是()A.兩點(diǎn)確定一條直線B.兩點(diǎn)之間,線段最短C.三角形具有穩(wěn)定性D.三角形的任意兩邊之和大于第三邊8、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.9、如圖,D為∠BAC的外角平分線上一點(diǎn),過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.2、邊長為1的小正方形組成如圖所示的6×6網(wǎng)格,點(diǎn)A,B,C,D,E,F(xiàn),G,H都在格點(diǎn)上.其中到四邊形ABCD四個頂點(diǎn)距離之和最小的點(diǎn)是_________.3、如圖,點(diǎn)B、E、C、F在一條直線上,AB=DE,BE=CF,請?zhí)砑右粋€條件______,使△ABC≌△DEF.4、如圖,線段AC與BD相交于點(diǎn)O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)5、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個單位長度的速度向終點(diǎn)C運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點(diǎn)A運(yùn)動,P、Q兩點(diǎn)同時出發(fā).分別過P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時,CQ的長為______.6、如圖,已知,,,則______°.7、如圖,PA=PB,請你添加一個適當(dāng)?shù)臈l件:___________,使得△PAD≌△PBC.8、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.9、如圖,△ABC中,∠B=20°,D是BC延長線上一點(diǎn),且∠ACD=60°,則∠A的度數(shù)是____________度.10、如圖,直線ED把分成一個和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知點(diǎn)A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請問線段AB與CD相等嗎?說明理由.2、如圖,點(diǎn)A,B,C,D在一條直線上,,,.求證:.3、將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關(guān)系:_________;(3)直接寫出與的數(shù)量關(guān)系:__________;(4)如圖2,當(dāng)且點(diǎn)E在直線的上方時,將三角尺固定不動,改變?nèi)浅叩奈恢?,但始終保持兩個三角尺的頂點(diǎn)C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.4、如圖,點(diǎn)E、B在線段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.5、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點(diǎn)M,N分別在等邊的邊上,且,,交于點(diǎn)Q.求證:.同學(xué)們利用有關(guān)知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點(diǎn)M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.6、如圖所示,AE與BD相交于點(diǎn)C,∠A=∠E,AB=ED,求證:△ABC≌△EDC.-參考答案-一、單選題1、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、B【分析】根據(jù)三角形全等的判定定理(定理和定理)即可得.【詳解】解:A、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;B、此項滿足定理,與全等,符合題意;C、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;D、中,角度為的夾邊長為,則此項不滿足定理,與不全等,不符題意;故選:B.【點(diǎn)睛】本題考查了三角形全等的判定定理,熟練掌握三角形全等的判定方法是解題關(guān)鍵.3、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點(diǎn)睛】本題主要考查了三角形的高的定義:從三角形的一個頂點(diǎn)向它的對邊作垂線,垂足與頂點(diǎn)之間的線段叫做三角形的高,熟記概念是解題的關(guān)鍵.4、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.5、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.6、A【分析】根據(jù)全等三角形的判定方法,對各選項分別判斷即可得解.【詳解】解:A、∠A=∠D,∠B=∠E,AC=DF,根據(jù)AAS可以判定,故此選項符合題意;B、∠A=∠E,AB=EF,∠B=∠D,AB與EF不是對應(yīng)邊,不能判定,故此選項不符合題意;C、∠A=∠D,∠B=∠E,∠C=∠F,沒有邊對應(yīng)相等,不可以判定,故此選項不符合題意;D、AB=DE,BC=EF,∠A=∠E,有兩邊對應(yīng)相等,一對角不是對應(yīng)角,不可以判定,故此選項不符合題意;故選A.【點(diǎn)睛】本題考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.7、C【分析】根據(jù)三角形具有穩(wěn)定性進(jìn)行求解即可.【詳解】解:工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學(xué)依據(jù)是三角形具有穩(wěn)定性,故選C.【點(diǎn)睛】本題主要考查了三角形的穩(wěn)定性,熟知三角形具有穩(wěn)定性是解題的關(guān)鍵.8、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.9、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.10、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實(shí)際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.二、填空題1、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.2、E【分析】到四邊形ABCD四個頂點(diǎn)距離之和最小的點(diǎn)是對角線的交點(diǎn),連接對角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個頂點(diǎn)距離之和最小是,該點(diǎn)為對角線的交點(diǎn),根據(jù)圖形可知,對角線交點(diǎn)為E,故答案為:E.【點(diǎn)睛】本題考查了三角形三邊關(guān)系,解題關(guān)鍵是通過連接輔助線,運(yùn)用三角形三邊關(guān)系判斷點(diǎn)的位置.3、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點(diǎn)睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.4、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.5、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時;(2)當(dāng)P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當(dāng)P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.6、59【分析】如圖,過作證明證明再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點(diǎn)睛】本題考查的是平行線的性質(zhì),平行公理的應(yīng)用,三角形的外角的性質(zhì),過作再證明是解本題的關(guān)鍵.7、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點(diǎn)睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.8、110°【分析】延長BD交AC于點(diǎn)E,根據(jù)三角形的外角性質(zhì)計算,得到答案.【詳解】延長BD交AC于點(diǎn)E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.9、40【分析】直接根據(jù)三角形外角的性質(zhì)可得結(jié)果.【詳解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴,故答案為:.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),熟知三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解本題的關(guān)鍵10、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點(diǎn)睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識點(diǎn).三、解答題1、AB=CD,理由見解析.【分析】由平行線的性質(zhì)得出∠A=∠C,證明△ABF≌△CDE(AAS),由全等三角形的性質(zhì)得出AB=CD.【詳解】解:AB=CD.理由如下:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴AB=CD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定理證明三角形全等.2、見解析【分析】根據(jù)平行線的性質(zhì)得出,運(yùn)用“角角邊”證明△AEB≌△CFD即可.【詳解】證明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定理進(jìn)行證明.3、(1);(2);(3);(4)存在一組邊互相平行;或或或或.【分析】(1)根據(jù)垂直的性質(zhì)結(jié)合圖形求解即可;(2)根據(jù)垂直的性質(zhì)及各角之間的關(guān)系即可得出;(3)由(2)可得,根據(jù)圖中角度關(guān)系可得,將其代入即可得;(4)根據(jù)題意,分五種情況進(jìn)行分類討論:①當(dāng)時;②當(dāng)時;③當(dāng)時;④當(dāng)時;⑤當(dāng)時;分別利用平行線的性質(zhì)進(jìn)行求解即可得.【詳解】解:(1)∵,∴,∵,∴,故答案為:;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電開槽施工方案(3篇)
- 連合廠家活動策劃方案(3篇)
- 肥料捐贈活動方案策劃(3篇)
- 超市活動文案策劃方案(3篇)
- 2025年智能化系統(tǒng)設(shè)計與實(shí)施指南
- 2025年高職特種動物養(yǎng)殖技術(shù)(兔子養(yǎng)殖管理)試題及答案
- 2025年中職植物保護(hù)(植物病蟲害基礎(chǔ))試題及答案
- 2025年中職(林業(yè)技術(shù))林木種苗培育基礎(chǔ)試題及答案
- 2025年高職餐飲智能管理(菜單設(shè)計)試題及答案
- 2025年高職本科(資源勘查工程技術(shù))地質(zhì)勘探技術(shù)階段測試題及答案
- 《特種水產(chǎn)養(yǎng)殖學(xué)》-3兩棲爬行類養(yǎng)殖
- 臨安區(qū)露營地管理辦法
- 監(jiān)獄企業(yè)車輛管理辦法
- DB5101∕T 213-2025 公園城市濱水綠地鳥類棲息地植物景觀營建指南
- 軍事體能培訓(xùn)課件
- 全麻剖宮產(chǎn)麻醉專家共識
- 產(chǎn)線協(xié)同管理制度
- 災(zāi)害應(yīng)急響應(yīng)路徑優(yōu)化-洞察及研究
- T/CAQI 96-2019產(chǎn)品質(zhì)量鑒定程序規(guī)范總則
- 2025既有建筑改造利用消防設(shè)計審查指南
- 化學(xué)-湖南省永州市2024-2025學(xué)年高二上學(xué)期1月期末試題和答案
評論
0/150
提交評論