江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題_第1頁
江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題_第2頁
江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題_第3頁
江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題_第4頁
江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省姜堰區(qū)實驗初中2025-2026學年數(shù)學高三第一學期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中,點在邊上,平分,若,,,,則()A. B. C. D.2.已知函數(shù),下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是3.設集合,,若,則的取值范圍是()A. B. C. D.4.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.35.若,,則的值為()A. B. C. D.6.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值7.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.9.將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.10.已知復數(shù),則的虛部為()A.-1 B. C.1 D.11.設全集集合,則()A. B. C. D.12.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.14.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現(xiàn)從中摸出2個球(除顏色與編號外球沒有區(qū)別),則恰好同時包含字母,的概率為________.15.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.16.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.18.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.19.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.20.(12分)已知函數(shù),.(1)當時,討論函數(shù)的單調性;(2)若,當時,函數(shù),求函數(shù)的最小值.21.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.22.(10分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由平分,根據(jù)三角形內角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內角平分線定理可得,又,,,,..故選:.本題主要考查平面向量的線性運算,屬于基礎題.2.D【解析】

通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.3.C【解析】

由得出,利用集合的包含關系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.本題考查利用集合的包含關系求參數(shù),考查計算能力,屬于基礎題.4.A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.5.A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.本題考查了二項式定理的應用,取和是解題的關鍵.6.D【解析】

根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎題.7.C【解析】

作出韋恩圖,數(shù)形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.本題考查集合關系及充要條件,注意數(shù)形結合方法的應用,屬于基礎題.8.C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.9.D【解析】

先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,

將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,

再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.三角函數(shù)的圖象與性質是高考考查的熱點之一,經??疾槎x域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復習時要注意基礎知識的理解與落實.三角函數(shù)的性質由函數(shù)的解析式確定,在解答三角函數(shù)性質的綜合試題時要抓住函數(shù)解析式這個關鍵,在函數(shù)解析式較為復雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質求解.10.A【解析】

分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.11.A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.12.D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】乙不輸?shù)母怕蕿?,?14.【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個球顏色不相同的情況數(shù),讓兩個球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.本題主要考查了求事件概率,解題關鍵是掌握概率的基礎知識和組合數(shù)計算公式,考查了分析能力和計算能力,屬于基礎題.15.【解析】

根據(jù)二項展開式的通項公式即可得結果.【詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:本題考查求二項展開式指定項的系數(shù),是基礎題.16.【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據(jù)雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ),.(Ⅱ)見解析【解析】

(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數(shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.本題主要考查根據(jù)的關系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學生的運算求解能力和推理證明能力.18.見解析【解析】

(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調遞減,在上單調遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設,,顯然函數(shù)在上單調遞增,當時,,,所以函數(shù)在內有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.19.(1)(2)【解析】

(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數(shù)列的前項和公式可求解.【詳解】(1)∵是等比數(shù)列,且成等差數(shù)列∴,即∴,解得:或∵,∴∵∴(2)∵∴本題考查等比數(shù)列的通項公式,考查并項求和法及等差數(shù)列的項和公式.本題求數(shù)列通項公式所用方法為基本量法,求和是用并項求和法.數(shù)列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.20.(1)見解析(2)的最小值為【解析】

(1)由題可得函數(shù)的定義域為,,當時,,令,可得;令,可得,所以函數(shù)在上單調遞增,在上單調遞減;當時,令,可得;令,可得或,所以函數(shù)在,上單調遞增,在上單調遞減;當時,恒成立,所以函數(shù)在上單調遞增.綜上,當時,函數(shù)在上單調遞增,在上單調遞減;當時,函數(shù)在,上單調遞增,在上單調遞減;當時,函數(shù)在上單調遞增.(2)方法一:當時,,,設,,則,所以函數(shù)在上單調遞減,所以,當且僅當時取等號.當時,設,則,所以,設,,則,所以函數(shù)在上單調遞減,且,,所以存在,使得,所以當時,;當時,,所以函數(shù)在上單調遞增,在上單調遞減,因為,,所以,所以,當且僅當時取等號.所以當時,函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當時,,,則,令,,則,所以函數(shù)在上單調遞增,又,所以存在,使得,所以函數(shù)在上單調遞減,在上單調遞增,因為,所以當時,恒成立,所以當時,恒成立,所以函數(shù)在上單調遞減,所以函數(shù)的最小值為.21.(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.本題考查面面垂直的證明以及利用向量法求解二面角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論