青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題_第1頁
青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題_第2頁
青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題_第3頁
青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題_第4頁
青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

青海省西寧市大通縣第一中學2025年數(shù)學高三上期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.3.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.4.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.5.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.6.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值7.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.已知函數(shù),則下列結論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到9.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-10.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.11.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.14.已知集合,,則__________.15.已知,則滿足的的取值范圍為_______.16.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.18.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.20.(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.21.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.22.(10分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據(jù)面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.2.B【解析】

選B.考點:圓心坐標3.B【解析】

由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關系及數(shù)量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.4.C【解析】

將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.5.D【解析】

先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調性,結合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當時,,故在區(qū)間上單調遞減;當時,,故在區(qū)間上單調遞增;當時,令,解得,故在區(qū)間單調遞減,在區(qū)間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調性以及函數(shù)值域的問題,屬綜合困難題.6.D【解析】

A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.7.B【解析】

根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.8.D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.9.A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.10.C【解析】

設公差為,則由題意可得,解得,可得.令

,可得

當時,,當時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設公差為,

則,解得

,.

,可得,故當時,,當時,,

故數(shù)列前項和中最小的是.故選:C.本題主要考查等差數(shù)列的性質,等差數(shù)列的通項公式的應用,屬于中檔題.11.B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關幾何量的數(shù)據(jù)是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.12.C【解析】

根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.14.【解析】

解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.15.【解析】

將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).本題考查分段函數(shù)的奇偶性與單調性的判定以及應用,注意分析f(x)的奇偶性與單調性.16.【解析】

由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】

(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據(jù)數(shù)學期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.本題考查概率與統(tǒng)計部分知識的綜合應用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數(shù)學期望的求解、統(tǒng)計估計等知識;考查學生的運算和求解能力.18.(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.19.(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.20.(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián);(3)分布列見解析,.【解析】

(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論