解析卷-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案解析)_第1頁(yè)
解析卷-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案解析)_第2頁(yè)
解析卷-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案解析)_第3頁(yè)
解析卷-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案解析)_第4頁(yè)
解析卷-人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練試卷(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、順次連接對(duì)角線互相垂直的四邊形的各邊中點(diǎn),所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形2、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測(cè)量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測(cè)得AB的長(zhǎng)為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km3、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC4、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.135、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、能使平行四邊形ABCD為正方形的條件是___________(填上一個(gè)符合題目要求的條件即可).2、已知正方形ABCD的一條對(duì)角線長(zhǎng)為2,則它的面積是______.3、如圖,平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,M、N分別為AB、BC的中點(diǎn),若OM=1.5,ON=1,則平行四邊形ABCD的周長(zhǎng)是________.4、如圖,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長(zhǎng)為_____.5、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長(zhǎng)度是__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、閱讀探究小明遇到這樣一個(gè)問(wèn)題:在中,已知,,的長(zhǎng)分別為,,,求的面積.小明是這樣解決問(wèn)題的:如圖1所示,先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)(即的3個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出的面積.他把這種解決問(wèn)題的方法稱為構(gòu)圖法,(1)圖1中的面積為________.實(shí)踐應(yīng)用參考小明解決問(wèn)題的方法,回答下列問(wèn)題:(2)圖2是一個(gè)的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1).①利用構(gòu)圖法在答題卡的圖2中畫出三邊長(zhǎng)分別為,,的格點(diǎn).②的面積為________(寫出計(jì)算過(guò)程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為________(在圖4中構(gòu)圖并填空).2、如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長(zhǎng).3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點(diǎn)B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點(diǎn)M,點(diǎn)P是AB的中點(diǎn),連PM,求∠PMO度數(shù);(3)在(2)的條件下,點(diǎn)Q是ON的中點(diǎn),連PQ,求證:PQ⊥AM.

4、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時(shí)由點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒.當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)為何值時(shí),四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時(shí),四邊形的面積是四邊形的面積的四分之三?求出此時(shí)的度數(shù).(4)連接,是否存在某一時(shí)刻,使為等腰三角形?若存在,請(qǐng)求出此刻的值;若不存在,請(qǐng)說(shuō)明理由.5、△ABC和△GEF都是等邊三角形.問(wèn)題背景:如圖1,點(diǎn)E與點(diǎn)C重合且B、C、G三點(diǎn)共線.此時(shí)△BFC可以看作是△AGC經(jīng)過(guò)平移、軸對(duì)稱或旋轉(zhuǎn)得到.請(qǐng)直接寫出得到△BFC的過(guò)程.遷移應(yīng)用:如圖2,點(diǎn)E為AC邊上一點(diǎn)(不與點(diǎn)A,C重合),點(diǎn)F為△ABC中線CD上一點(diǎn),延長(zhǎng)GF交BC于點(diǎn)H,求證:.聯(lián)系拓展:如圖3,AB=12,點(diǎn)D,E分別為AB、AC的中點(diǎn),M為線段BD上靠近點(diǎn)B的三等分點(diǎn),點(diǎn)F在射線DC上運(yùn)動(dòng)(E、F、G三點(diǎn)按順時(shí)針排列).當(dāng)最小時(shí),則△MDG的面積為_______.-參考答案-一、單選題1、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對(duì)邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點(diǎn),∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、矩形的判定等知識(shí)點(diǎn),熟練掌握三角形中位線定理是解題關(guān)鍵.2、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.3、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對(duì)角線互相垂直可判斷B,由正方形的對(duì)角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.4、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長(zhǎng)EF,交CD延長(zhǎng)線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長(zhǎng)EF,交CD延長(zhǎng)線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).二、填空題1、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時(shí),平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時(shí),平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點(diǎn)睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.2、6【解析】【分析】正方形的面積:邊長(zhǎng)的平方或兩條對(duì)角線之積的一半,根據(jù)公式直接計(jì)算即可.【詳解】解:正方形ABCD的一條對(duì)角線長(zhǎng)為2,故答案為:【點(diǎn)睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對(duì)角線之積的一半”是解題的關(guān)鍵.3、10【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得BO=DO,AD=BC,AB=CD,再由條件M、N分別為AB、BC的中點(diǎn)可得MO是△ABD的中位線,NO是△BCD的中位線,再根據(jù)三角形中位線定理可得AD、DC的長(zhǎng).【詳解】解:∵四邊形ABCD是平行四邊形,∴BO=DO,AD=BC,AB=CD,∵M(jìn)、N分別為AB、BC的中點(diǎn),∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四邊形ABCD的周長(zhǎng)是:3+3+2+2=10,故答案為:10.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及中位線定理,關(guān)鍵是掌握平行四邊形對(duì)邊相等,對(duì)角線互相平分.4、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.5、【解析】【分析】根據(jù)中位線定理可得的長(zhǎng)度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長(zhǎng)度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.三、解答題1、(1);(2)①作圖見詳解;②8;(3)在網(wǎng)格中作圖見詳解;31.【分析】(1)根據(jù)網(wǎng)格可直接用割補(bǔ)法求解三角形的面積;(2)①利用勾股定理畫出三邊長(zhǎng)分別為、、,然后依次連接即可;②根據(jù)①中圖形,可直接利用割補(bǔ)法進(jìn)行求解三角形的面積;(3)根據(jù)題意在網(wǎng)格中畫出圖形,然后在網(wǎng)格中作出,,進(jìn)而可得,得出,進(jìn)而利用割補(bǔ)法在網(wǎng)格中求解六邊形的面積即可.【詳解】解:(1)△ABC的面積為:,故答案為:;(2)①作圖如下(答案不唯一):②的面積為:,故答案為:8;(3)在網(wǎng)格中作出,,在與中,,∴,∴,,六邊形AQRDEF的面積=正方形PQAF的面積+正方形PRDE的面積+的面積,故答案為:31.【點(diǎn)睛】本題主要考查勾股定理、正方形的性質(zhì)、割補(bǔ)法求解面積及二次根式的運(yùn)算,熟練掌握勾股定理、正方形的性質(zhì)、割補(bǔ)法求解面積及二次根式的運(yùn)算是解題的關(guān)鍵.2、(1)矩形,見解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,從而得到AB=CF;由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對(duì)角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形;(2)先證△ABE是等邊三角形,可得AB=AE=EF=3.【詳解】解:(1)四邊形ABFC是矩形,理由如下:∵四邊形ABCD是平行四邊形,∴,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E為BC的中點(diǎn),∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵,∴四邊形ABFC是平行四邊形,∵AD=BC,AD=AF,∴BC=AF,∴四邊形ABFC是矩形.(2)∵四邊形ABFC是矩形,∴BC=AF,AE=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴AB=AE=3,∴EF=3.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,矩形的判定,三角形全等的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,掌握以上性質(zhì)定理是解題的關(guān)鍵.3、(1)(1,4);(2)45°;(3)見解析

【分析】(1)過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點(diǎn)A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點(diǎn)B的坐標(biāo)為(1,4);(2)延長(zhǎng)MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點(diǎn)G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點(diǎn)A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點(diǎn)B的坐標(biāo)為(1,4);(2)如圖所示,延長(zhǎng)MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點(diǎn)P是AB的中點(diǎn),∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點(diǎn)G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點(diǎn),G是BM的中點(diǎn),ON=BM=1,∴,∵P是AB中點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,全等三角形的性質(zhì)與判定,三角形中位線定理,等腰直角三角形的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或

或時(shí),為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對(duì)邊相等AQ=BP建立方程求解即可;

(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;

(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;

(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動(dòng)知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時(shí),四邊形ABPQ是平行四邊形;(2)過(guò)點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運(yùn)動(dòng)知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=16×4=64,

由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),

∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三

∴2t+32=×64,

∴t=8;

如圖,當(dāng)t=8時(shí),點(diǎn)P和點(diǎn)C重合,DQ=8,

∵CD=AB=8,

∴DP=DQ,

∴∠DQC=∠DPQ,

∴∠D=∠B=30°,

∴∠DQP=75°;(4)①當(dāng)AB=BP時(shí),BP=8,

即2t=8,t=4;

②當(dāng)AP=BP時(shí),如圖,∵∠B=30°,

過(guò)P作PM垂直于AB,垂足為點(diǎn)M,

∴BM=4,,解得:BP=,

∴2t=,

∴t=

③當(dāng)AB=AP時(shí),同(2)的方法得,BP=,

∴2t=,

∴t=

所以,當(dāng)t=4或或時(shí),△ABP為等腰三角形.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的性質(zhì),含30°的直角三角形的性質(zhì),等腰三角形的性質(zhì),解(1)的關(guān)鍵是利用AQ=BP建立方程,解(2)的關(guān)鍵是求出梯形的高,解(3)的關(guān)鍵是求出t,解(4)的關(guān)鍵是分類討論的思想思考問(wèn)題.5、(1)以點(diǎn)C為旋轉(zhuǎn)中心將逆時(shí)針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長(zhǎng)線交于點(diǎn)K,如圖,先證明,然后證明,得到,則,過(guò)點(diǎn)F作FM⊥BC于M,求出,即可推出,則,即:;法二:過(guò)F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點(diǎn)G在的角平分線所在直線上運(yùn)動(dòng).過(guò)G

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論