版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=3,BC=5,點E為CB上一動點(不與點C重合),將△CDE沿DE所在直線折疊,點C的對應(yīng)點C'恰好落在AE上,則CE的長是()A. B.1 C.2 D.2、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(
)A.1個 B.2個 C.3個 D.4個3、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.44、妙妙上學(xué)經(jīng)過兩個路口,如果每個路口可直接通過和需等待的可能性相等,那么妙妙上學(xué)時在這兩個路口都直接通過的概率是(
)A. B. C. D.5、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=4.點F為射線CB上一動點,過點C作CM⊥AF于M,交AB于E,D是AB的中點,則DM長度的最小值是()A. B. C. D.6、如圖,在平行四邊形中,,.連接AC,過點B作,交DC的延長線于點E,連接AE,交BC于點F.若,則四邊形ABEC的面積為(
)A. B. C.6 D.7、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(
)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°二、多選題(3小題,每小題2分,共計6分)1、如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論中正確的有(
)A.AE=BF; B.AE⊥BF; C.AO=OE; D.2、如圖,在正方形中,,點在邊上,且.將沿對折至,點落在正方形內(nèi)部點處,延長交邊于點,連接,.下列結(jié)論正確的是(
)A. B.C. D.3、下列各數(shù)不是方程解的是(
)A.6 B.2 C.4 D.0第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.2、關(guān)于x的方程有兩個實數(shù)根.且.則_______.3、如圖,四邊形ABCD為菱形,,延長BC到E,在內(nèi)作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.4、如圖,中,對角線AC,BD相交于點O,添加一個條件,能使成為菱形.你添加的條件是__________(不再添加輔助線和字母)5、如果關(guān)于的一元二次方程的一個解是,那么代數(shù)式的值是___________.6、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕?jīng)濟(jì)效益.若沿線某地區(qū)居民2017年人均收入300美元,預(yù)計2019年人均收入將達(dá)到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.7、如圖,在長方形ABCD中,AD=8,AB=6,點E為線段DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,則DE的長為___.8、已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.9、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.10、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.四、解答題(6小題,每小題10分,共計60分)1、在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.(1)求證:△ABE≌△ADF;(2)試判斷四邊形AECF的形狀,并說明理由.2、如圖,□ABCD中,AC為對角線,EF⊥AC于點O,交AD于點E,交BC于點F,連結(jié)AF、CE.請你探究當(dāng)O點滿足什么條件時,四邊形AFCE是菱形,并說明理由.3、如圖,在?ABCD中,E,F(xiàn)分別是AD,BC上的點,且DE=BF,AC⊥EF,求證:四邊形AECF是菱形.4、如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.(1)求證:四邊形OCED是矩形;(2)若CE=1,DE=2,ABCD的面積是.5、如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別為OB,OD的中點,延長AE至點G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當(dāng)AB與AC滿足什么數(shù)量關(guān)系時,四邊形EGCF是矩形?請說明理由.6、學(xué)生甲與乙學(xué)習(xí)概率初步知識后設(shè)計了如下游戲:甲手中有、、三張撲克牌,乙手中有、、三張撲克牌,每局比賽時,兩人從各自手中隨機取一張牌進(jìn)行比較,數(shù)字大的則本局獲勝.(1)若每人隨機取出手中的一張牌進(jìn)行比較,請列舉出所有情況;(2)求學(xué)生乙一局比賽獲勝的概率.-參考答案-一、單選題1、B【解析】【分析】由矩形的性質(zhì)得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,設(shè)CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故選:B.【考點】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等知識;熟練掌握翻折變換和矩形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.2、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細(xì)分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.3、C【解析】【分析】根據(jù)菱形的性質(zhì),結(jié)合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質(zhì),中位線的性質(zhì),等腰三角形的性質(zhì)和判斷,平行線的性質(zhì),菱形的面積,三角形面積的計算,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)得出DF為△ABC的中位線,是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)題意畫出樹形圖,求出在這兩個路口都直接通過的概率為即可求解.【詳解】解:由題意畫樹形圖得,由樹形圖得共有4種等可能性,其中在這兩個路口都直接通過的概率是P=.故選:A【考點】本題考查了列表或畫樹形圖求概率,理解題意,正確列表或畫樹形圖得到所有等可能的結(jié)果是解題關(guān)鍵.5、C【解析】【分析】如圖,取AC的中點T,連接DT,MT.利用三角形的中位線定理求出DT,利用直角三角形的中線的性質(zhì)求出MT,再根據(jù)DM≥MT-DT,可得結(jié)論.【詳解】解:如圖,取AC的中點T,連接DT,MT.∵AD=DB,AT=TC,∴DT=BC=2,∵CE⊥AF,∴∠AMC=90°,∴TM=AC=3,∴點M的運動軌跡是以T為圓心,TM為半徑的圓,∴DM≥TM-DT=3-2=1,∴DM的最小值為1,故選:C.【考點】本題考查了三角形中位線定理,直角三角形斜邊中線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造三角形中位線,直角三角形斜邊中線解決問題.6、B【解析】【分析】先證明四邊形ABEC為矩形,再求出AC,即可求出四邊形ABEC的面積.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵,∴四邊形ABEC為平行四邊形,∵,∴,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四邊形ABEC是矩形,∴∠BAC=90°,∴,∴矩形ABEC的面積為.故選:B【考點】本題考查了平行四邊形的性質(zhì),矩形的判定與性質(zhì),勾股定理等知識,熟知相關(guān)定理,證明四邊形ABEC為矩形是解題關(guān)鍵.7、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據(jù)有一個角是直角的平行四邊形是矩形可判斷A;根據(jù)有一組鄰邊相等的平行四邊形是菱形可判斷B;根據(jù)對角線相等的平行四邊形是矩形可判斷C;根據(jù)有一個角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項不符合題意;故選:B.【考點】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解決問題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)正方形的性質(zhì)得AB=AD=DC,∠BAD=∠D=90°,則由CE=DF易得AF=DE,根據(jù)“SAS”可判斷△ABF≌△DAE,所以AE=BF;根據(jù)全等的性質(zhì)得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,則AE⊥BF;連結(jié)BE,BE>BC,BA≠BE,而BO⊥AE,根據(jù)垂直平分線的性質(zhì)得到OA≠OE;最后根據(jù)△ABF≌△DAE得S△ABF=S△DAE,則S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四邊形DEOF.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中∴△ABF≌△DAE,∴AE=BF,所以A選項符合題意;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以B選項符合題意;連結(jié)BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以C選項不符合題意;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四邊形DEOF,所以D選項符合題意.故選ABD.【考點】本題考查了全等三角形的判定與性質(zhì),線段垂直平分線的判定與性質(zhì),也考查了正方形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.2、ABC【解析】【分析】根據(jù)正方形的性質(zhì)得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根據(jù)HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6﹣x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,再根據(jù)等角的余角相等即可證得∠BAG=∠FCE,根據(jù)GF=3,EF=2可得GF=GE,進(jìn)而S△FGC=S△GCE=,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°.∵CD=3DE,∴DE=2,CE=4.∵△ADE沿AE折疊得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB.∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故A選項正確;∴BG=FG,∠AGB=∠AGF,設(shè)BG=x,則CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,故B選項正確;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∵∠B=∠BCD=90°,∴∠BAG+∠AGB=∠FCE+∠FCG=90°,∴∠BAG=∠FCE,故C選項正確;∵GF=3,EF=2,∴GF=GE,∴S△FGC=S△GCE=×CG·CE=××3×4=,故D選項錯誤,故選:ABC.【考點】本題考查了翻折變換,正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,勾股定理等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.3、ACD【解析】【分析】分別把四個選項中的數(shù)代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關(guān)鍵是熟練掌握一元二次方程解得含義.三、填空題1、﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因為k≠0,所以k的值為﹣3.故答案為﹣3.【考點】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.2、3【解析】【分析】先根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得,再根據(jù)可得一個關(guān)于的方程,解方程即可得的值.【詳解】解:由題意得:,,,化成整式方程為,解得或,經(jīng)檢驗,是所列分式方程的增根,是所列分式方程的根,故答案為:3.【考點】本題考查了一元二次方程的根與系數(shù)的關(guān)系、解分式方程,熟練掌握一元二次方程的根與系數(shù)的關(guān)系是解題關(guān)鍵.3、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質(zhì)得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質(zhì)得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質(zhì)和全等三角形的判定,菱形的對角線互相平分是此題的關(guān)鍵知識點,得出∠HDC=∠FDC是這個題最關(guān)鍵的一點.4、或或或或【解析】【分析】題中實在平行四邊形基礎(chǔ)上進(jìn)行菱形的判定,從邊、角、對角線三個方面思考:①鄰邊相等的平行四邊形是菱形;②角上面沒有;③對角線互相垂直的平行四邊形是菱形;相應(yīng)添加條件即可.【詳解】在基礎(chǔ)上,從邊上添加有四種:①;②;③;④;從對角線上添加有:,故答案為:或或或或.【考點】本題考查菱形的判定,熟練掌握平行四邊形及特殊平行四邊形的性質(zhì),并清楚是在誰的基礎(chǔ)上進(jìn)行判定是解決問題的關(guān)鍵.5、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.6、20【解析】【分析】設(shè)該地區(qū)人均收入增長率為x,根據(jù)2017年人均收入300美元,預(yù)計2019年人均收入將達(dá)到432美元,可列方程求解.【詳解】解:設(shè)該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應(yīng)為:20%.【考點】一元二次方程在實際生活中的應(yīng)用是本題的考點,根據(jù)題意列出方程是解題的關(guān)鍵.7、或8或或【解析】【分析】當(dāng)△CEF為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時,如答圖1所示.先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AFE=∠D=90°,設(shè)DE=x,則EF=x,CE=6-x,然后在Rt△CEF中運用勾股定理可計算出x即可.②當(dāng)點F落在AB邊上時,如答圖2所示.此時四邊形ADEF為正方形,得出DE=AD=8.③當(dāng)點F落在BC邊上時,利用勾股定理即可解決問題;④如圖4中,當(dāng)點F在CB的延長線上時,根據(jù)勾股定理列出方程求解即可.【詳解】解:∵四邊形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,當(dāng)△CEF為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時,F(xiàn)落在AC上,如圖1所示.由折疊的性質(zhì)得:EF=DE,AF=AD=8,設(shè)DE=x,則EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②當(dāng)點F落在AB邊上時,如圖2所示.此時ADEF為正方形,∴DE=AD=8.③如圖4,當(dāng)點F落在BC邊上時,易知BF,設(shè)DE=EF=x,在Rt△EFC中,,,,④如圖3中,當(dāng)點F在CB的延長線上時,設(shè)DE=EF=x,則BF,在Rt△CEF中,,解得x=,綜上所述,BE的長為或8或或.【考點】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、勾股定理、正方形的判定與性質(zhì)等知識;熟練掌握折疊和矩形的性質(zhì)是解決問題的關(guān)鍵.8、2【解析】【詳解】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.9、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運用.10、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個不相等的實數(shù)根;當(dāng)Δ=0,方程有兩個相等的實數(shù)根;當(dāng)Δ<0,方程沒有實數(shù)根.四、解答題1、(1)證明見解析(2)菱形【解析】【詳解】分析:(1)根據(jù)正方形的性質(zhì)和全等三角形的判定證明即可;(2)四邊形AECF是菱形,根據(jù)對角線垂直的平行四邊形是菱形即可判斷;詳證明:(1)∵四邊形ABCD是正方形,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE與△ADF中,∴△ABE≌△ADF(SAS)(2)如圖,連接AC,四邊形AECF是菱形.理由:在正方形ABCD中,OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四邊形AECF是平行四邊形,∵AC⊥EF,∴四邊形AECF是菱形.點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、菱形的判定等知識,解題的關(guān)鍵是熟練掌握基本知識.2、當(dāng)O是AC的中點時,四邊形AFCE是菱形,理由見解析.【解析】【分析】當(dāng)O是AC的中點時,四邊形AFCE是菱形;根據(jù)平行四邊形性質(zhì)推出AD∥BC,根據(jù)全等三角形的判定和性質(zhì)求出OE=OF,推出平行四邊形AFCE,根據(jù)菱形的判定推出即可.【詳解】解:當(dāng)O是AC的中點時,四邊形AFCE是菱形.理由如下:連接AF,CE.∵在?ABCD中,AD∥BC,∴∠EAO=∠FCO.∵點O是AC的中點,∴AO=CO.又∵∠EOA=∠FOC,∴△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四邊形AFCE是平行四邊形.∴當(dāng)EF⊥AC時,四邊形AFCE是菱形.【考點】本題考查了平行四邊形的性質(zhì),菱形的判定等知識點的運用,關(guān)鍵是根據(jù)題意推出OE=OF,題目比較典型.3、見解析【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形即可證明【詳解】證明:四邊形是平行四邊形,,,,,,四邊形是平行四邊形,,四邊形是菱形.【考點】本題考查平行四邊形的性質(zhì)、菱形的判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常考題型.4、(1)證明見解析;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃配料熔化工安全生產(chǎn)能力競賽考核試卷含答案
- 道路客運服務(wù)員變更管理測試考核試卷含答案
- 氯丁橡膠裝置操作工操作知識能力考核試卷含答案
- 2025年硫酸黏菌素類產(chǎn)品項目發(fā)展計劃
- 2025年環(huán)境污染防治專用設(shè)備合作協(xié)議書
- 2025年吡嗪酮項目合作計劃書
- 2025年工商用制冷、空調(diào)設(shè)備項目合作計劃書
- 2025年汽車液力變矩器合作協(xié)議書
- 2025年雙氰胺合作協(xié)議書
- 消防安全隱患排查清單
- 新能源汽車火災(zāi)撲救課件
- 《醫(yī)學(xué)影像診斷報告書寫指南》(2025版)
- 紅酒倒酒知識培訓(xùn)總結(jié)報告課件
- 電大??啤豆残姓W(xué)》簡答論述題題庫及答案
- 2025成人高考全國統(tǒng)一考試專升本英語試題及答案
- 代辦煙花爆竹經(jīng)營許可證協(xié)議合同
- 國企員工總額管理辦法
- 企業(yè)級AI大模型平臺落地框架
- TD/T 1036-2013土地復(fù)墾質(zhì)量控制標(biāo)準(zhǔn)
- 蘇教版六年級數(shù)學(xué)上冊全冊知識點歸納(全梳理)
評論
0/150
提交評論