滬科版9年級下冊期末測試卷【B卷】附答案詳解_第1頁
滬科版9年級下冊期末測試卷【B卷】附答案詳解_第2頁
滬科版9年級下冊期末測試卷【B卷】附答案詳解_第3頁
滬科版9年級下冊期末測試卷【B卷】附答案詳解_第4頁
滬科版9年級下冊期末測試卷【B卷】附答案詳解_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列說法正確的是()A.擲一枚質(zhì)地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復(fù)試驗,可以用頻率估計概率.2、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.3、如圖,點P是等邊三角形ABC內(nèi)一點,且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°4、如圖,將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°5、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞6、扇形的半徑擴大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴大為原來的3倍C.面積擴大為原來的9倍 D.面積縮小為原來的7、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個8、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.2、如圖,是由繞點O順時針旋轉(zhuǎn)30°后得到的圖形,若點D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.3、平面直角坐標系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當BK取最小值時,點B的坐標為_________.4、如圖,在矩形中,,,F(xiàn)為中點,P是線段上一點,設(shè),連結(jié)并將它繞點P順時針旋轉(zhuǎn)90°得到線段,連結(jié)、,則在點P從點B向點C的運動過程中,有下面四個結(jié)論:①當時,;②點E到邊的距離為m;③直線一定經(jīng)過點;④的最小值為.其中結(jié)論正確的是______.(填序號即可)5、在平面直角坐標系中,點關(guān)于原點對稱的點的坐標是______.6、AB是的直徑,點C在上,,點P在線段OB上運動.設(shè),則x的取值范圍是________.7、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計0分)1、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.2、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.3、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數(shù)關(guān)系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉(zhuǎn)得到,點P是直線上一動點,連接,求的最小值.4、在同樣的條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?5、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.7、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.-參考答案-一、單選題1、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復(fù)試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質(zhì)地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質(zhì):對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復(fù)試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務(wù)發(fā)生的概率是本題關(guān)鍵.2、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.3、D【分析】將繞點逆時針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點逆時針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.4、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)求解再利用三角形的內(nèi)角和定理求解再利用角的和差關(guān)系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點睛】本題考查的是三角形的內(nèi)角和定理的應(yīng)用,旋轉(zhuǎn)的性質(zhì),掌握“旋轉(zhuǎn)前后的對應(yīng)角相等”是解本題的關(guān)鍵.5、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識是解題的關(guān)鍵.6、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計算得出它們的面積,從而進行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點睛】本題考查了扇形面積,熟練掌握并靈活運用扇形面積公式是解題關(guān)鍵.7、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.8、A【分析】根據(jù)必然事件、不可能事件、隨機事件的概念進行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.2、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】解:∵△COD是△AOB繞點O順時針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.3、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標,從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應(yīng)用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點B的運動軌跡,學會利用垂線段最短解決最短問題.4、②③④【分析】①當在點的右邊時,得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當時,有最小值,計算即可.【詳解】解:,為等腰直角三角形,,當在點的左邊時,,當在點的右邊時,,故①錯誤;過點作,在和中,根據(jù)旋轉(zhuǎn)的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點,不管P在上怎么運動,得到都是等腰直角三角形,,即直線一定經(jīng)過點,故③正確;是等腰直角三角形,當時,有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形,解題的關(guān)鍵是靈活運用這些性質(zhì)進行推理.5、(3,4)【分析】關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關(guān)于原點對稱的點的坐標是(3,4),故答案為:(3,4).【點睛】本題考查了關(guān)于原點對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).6、【分析】分別求出當點P與點O重合時,當點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當點P與點O重合時,∵OA=OC,∴,即;當點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運動位置是解題的關(guān)鍵.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,靈活運用所學知識解決問題.三、解答題1、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質(zhì)解得,再根據(jù)內(nèi)錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內(nèi)角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應(yīng)邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結(jié)合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設(shè)圓的半徑為R,點F是劣弧AD的中點,OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點睛】本題考查圓的綜合題,涉及切線的判定與性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、扇形面積等知識,綜合性較強,有難度,掌握相關(guān)知識是解題關(guān)鍵.2、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結(jié)論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結(jié)論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①當MA經(jīng)過BC的中點E時,同(1)作輔助線,如圖:設(shè)FD=x,由(1)的結(jié)論得FG=EF=2+x,F(xiàn)C=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②當NA經(jīng)過BC的中點G時,同(2)作輔助線,設(shè)BE=x,由(2)的結(jié)論得EC=4+x,EF=FH,∵K為BC邊的中點,∴CK=BC=2,同理可證△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.綜上,線段EF的長為或.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學會利用旋轉(zhuǎn)法添加輔助線,構(gòu)造全等三角形解決問題,學會利用參數(shù)構(gòu)建方程解決問題.3、(1)(2)【分析】(1)根據(jù)運動重合部分不同情況分四種情況討論,①當時,②當時,③當時,④當時,根據(jù)三角形的面積公式求函數(shù)解析式即可.(2)作關(guān)于的對稱點,連接,過點作于點,過點作于點,設(shè)交于點,交于點,則的最小值即為的長,進而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當時,如圖,重疊部分面積為,設(shè)交于點,過點作于點,以每秒1個單位的速度沿向右運動,設(shè),則在,,即解得②當時,如圖,重疊部分面積為四邊形的面積,設(shè)交于點,過點作于點,設(shè)交于點,,③當時,此時重疊面積為④當時,如圖,設(shè)交于點,此時重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關(guān)于的對稱點,連接,過點作于點,過點作于點,設(shè)交于點,交于點,則在中,則的最小值即為的長在中,設(shè),,則中,為的中點,則,即的最小值為【點睛】本題考查了動點的函數(shù)問題,解直角三角形,(1)分類討論,(2)轉(zhuǎn)化線段是解題的關(guān)鍵.4、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計麥種的發(fā)芽率,大數(shù)次實驗,當頻率固定到一個穩(wěn)定值時,可根據(jù)頻率公式=頻數(shù)÷總數(shù)計算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實驗數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點睛】本題考查用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.5、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,勾股定理,解決本題的關(guān)鍵是掌握切線的判定與性質(zhì).6、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論