版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省德興市中考數(shù)學題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、已知學校航模組設計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(
)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m2、下列方程中,一定是關于x的一元二次方程的是(
)A. B.C. D.3、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(
)A. B. C. D.4、關于的一元二次方程的兩根應為(
)A. B., C. D.5、關于的方程有兩個不相等的實根、,若,則的最大值是(
)A.1 B. C. D.2二、多選題(5小題,每小題3分,共計15分)1、下列方程中,關于x的一元二次方程有(
)A.x2=0 B.a(chǎn)x2+bx+c=0 C.x2-3=x D.a(chǎn)2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-92、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m3、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉(zhuǎn)、軸對稱、中心對稱等變換,其中進行了旋轉(zhuǎn)變換的是(
)組,進行軸對稱變換的是(
).A. B. C. D.4、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論中正確的有()A.a(chǎn)bc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥05、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(
)A.① B.② C.③ D.④第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù)與x軸有兩個交點,把當k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.2、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.3、如果關于的一元二次方程的一個解是,那么代數(shù)式的值是___________.4、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.5、已知關于x的一元二次方程的一個根比另一個根大2,則m的值為_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關于的函數(shù)關系式,并求出的最大值.(2)當點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.2、如圖是兩條互相垂直的街道,且A到B,C的距離都是4千米.現(xiàn)甲從B地走向A地,乙從A地走向C地,若兩人同時出發(fā)且速度都是4千米/時,問何時兩人之間的距離最近?3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構成什么圖形,請說明理由.4、某服裝店在銷售中發(fā)現(xiàn):進貨價為每件50元,銷售價為每件90元的某品牌服裝平均每天可售出20件.現(xiàn)服裝店決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,那么平均每天就可多售出2件.(1)求銷售價在每件90元的基礎上,每件降價多少元時,平均每天銷售這種服裝能盈利1200元,同時又要使顧客得到較多的實惠?(2)要想平均每天盈利2000元,可能嗎?請說明理由.5、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場調(diào)研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?6、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側).(1)求拋物線的頂點P的坐標(用含a的代數(shù)式表示);(2)橫、縱坐標都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當“W區(qū)域”內(nèi)恰有2個整點時,結合函數(shù)圖象,直接寫出a的取值范圍.-參考答案-一、單選題1、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當t=1時,h=24;當t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應用,解題的關鍵是熟練掌握二次函數(shù)的性質(zhì).2、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個未知數(shù),并且含有未知數(shù)的項的次數(shù)最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關鍵.3、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.4、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關鍵是根據(jù)公式法解一元二次方程.5、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關系,求得兩根之和和兩根之積,再根據(jù)兩根關系,求得系數(shù)的關系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關系得到系數(shù)的關系是解題的關鍵.二、多選題1、AC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當a=0時,不是一元二次方程;D.a2+a-x=0是關于x的一元一次方程;E.(m-1)x2+4x+=0,當m=1時為關于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點】本題考查了一元二次方程的定義,一元二次方程具有以下三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應用、求出拋物線的解析式是解題的關鍵,屬于中考??碱}型.3、AC【解析】【分析】旋轉(zhuǎn)是一個圖形繞著一個定點旋轉(zhuǎn)一定的角度,各對應點之間的位置關系也保持不變;在平面內(nèi),如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據(jù)此即可解答.【詳解】由旋轉(zhuǎn)是一個圖形繞著一個定點旋轉(zhuǎn)一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉(zhuǎn)變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據(jù)平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.4、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=-2a可對B進行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進行判斷;根據(jù)二次函數(shù)性質(zhì),x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關系,一般要轉(zhuǎn)化成關于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標系中的上下位置關系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.5、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關鍵在于根據(jù)表格獲取正確的信息.三、填空題1、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標,畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)
:①因為為的,所以它的圖象從左到右是上升的,當它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關鍵.2、【解析】【分析】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),再求出平移后的頂點坐標,最后求出平移后的函數(shù)關系式.【詳解】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關鍵是正確理解圖象變換的條件,本題屬于基礎題型.3、【解析】【分析】根據(jù)關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.4、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.5、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關鍵是熟知因式分解法的運用.四、解答題1、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關線段求得兩個變量之間的函數(shù)關系即可.(2)分兩種情形:①如圖中,由題意點在上運動的時間與點在上運動的時間相等,即.當時,當時,當時,分別構建方程求解即可.②如圖中,作于.首先證明,根據(jù)構建方程即可解決問題.【詳解】解:(1)如圖中,當時,點與點都在上運動,,,,,,,,,,.此時兩平行線截平行四邊形的面積為.如圖中,當時,點在上運動,點仍在上運動.則,,,,,,,而,故此時兩平行線截平行四邊形的面積為:,如圖中,當時,點和點都在上運動.則,,,.此時兩平行線截平行四邊形的面積為.故關于的函數(shù)關系式為,當時,S隨t增大而增大,當時,S隨t增大而增大,當時,S隨t增大而減小,∴當t=8時,S最大,代入可得S=;(2)如圖中,由題意點在上運動的時間與點在上運動的時間相等,.當時,,則有,解得,當時,則有,解得,當時,,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當時,則有,解得,綜上所述,滿足條件的m的值為或或或.【考點】本題屬于四邊形綜合題,考查了平行四邊形的性質(zhì),多邊形的面積,等腰三角形的判定和性質(zhì)等知識,解題的關鍵是學會用分類討論的思想思考問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.2、當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米【解析】【分析】設兩人均出發(fā)了t時,根據(jù)勾股定理建立甲、乙之間的距離與時間t的函數(shù)關系式,然后求出二次函數(shù)在一定的取值范圍內(nèi)的最值即可得解.【詳解】設兩人均出發(fā)了t時,則此時甲到A地的距離是(4-4t)千米,乙離A地的距離是4t千米,由勾股定理,得甲,乙兩人間的距離為:S=,∴當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米.【考點】本題考查二次函數(shù)的實際應用,關鍵在于根據(jù)題意寫出二次函數(shù)關系式,再利用求二次函數(shù)的最值方法求最值.3、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,構造直角三角形是解題的關鍵.4、(1)每件降價20元(2)不可能,理由見解析【解析】【分析】(1)根據(jù)題意列出方程,即每件服裝的利潤×銷售量=總盈利,再求解,把不符合題意的舍去;(2)根據(jù)題意列出方程進行求解即可.(1)解:設每件服裝降價x元.由題意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,為使顧客得到較多的實惠,應取x=20;答:每件降價20元時,平均每天銷售這種服裝能盈利1200元,同時又要使顧客得到較多的實惠;(2)解:不可能,理由如下:依題意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46851-2025智能船舶避碰系統(tǒng)技術要求及測試方法
- 青海省海東市2026屆九年級上學期期末學業(yè)質(zhì)量評估歷史試卷(含答案)
- 中學教師職稱晉升制度
- 信息技術安全規(guī)范制度
- 企業(yè)內(nèi)部會議紀要及跟進制度
- 老年終末期認知照護中的醫(yī)患溝通策略
- 老年終末期疼痛治療的藥物相互作用優(yōu)化策略
- 老年終末期患者圍術期治療的個體化倫理策略
- 新生兒日常護理要點
- 上海青浦法院書記員招聘考試真題庫2025
- 剪映完整課件
- DB32∕T 310026-2024 雷電防護裝置檢測部位及檢測點確認技術規(guī)范
- 會銷主持培訓課件
- 2025新能源集控中心規(guī)范化管理導則
- 2025屆新疆烏魯木齊市高三下學期三模英語試題(解析版)
- 混動能量管理與電池熱管理的協(xié)同優(yōu)化-洞察闡釋
- T-CPI 11029-2024 核桃殼濾料標準規(guī)范
- 統(tǒng)編版語文三年級下冊整本書閱讀《中國古代寓言》推進課公開課一等獎創(chuàng)新教學設計
- 2025年江蘇省蘇州市初三上學期物理期末陽光調(diào)研測試卷及答案
- 《顧客感知價值對綠色酒店消費意愿的影響實證研究-以三亞S酒店為例(附問卷)15000字(論文)》
- 學校教職工代表大會會議會務資料匯編
評論
0/150
提交評論