版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2020-2021八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)(2)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,等腰直角△ABC中,∠C=90°,點(diǎn)F是AB邊的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且∠DFE=90°,連接DE、DF、EF,在此運(yùn)動(dòng)變化過程中,下列結(jié)論:①圖中全等的三角形只有兩對(duì);②△ABC的面積是四邊形CDFE面積的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有(??)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.在平面直角坐標(biāo)系內(nèi)的機(jī)器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)A后,再向正前方沿直線行走α.若機(jī)器人的位置在原點(diǎn),正前方為y軸的負(fù)半軸,則它完成一次指令[4,30°]后位置的坐標(biāo)為()A.(-2,2) B.(-2,-2) C.(-2,-2) D.(-2,2)3.如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,B,C的距離分別為3,4,5,則△ABC的面積為()A. B. C. D.4.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,交AC于點(diǎn)D,若CD=1,則AB的長是()A.2 B. C. D.45.已知△ABC是腰長為1的等腰直角三角形,以Rt△ABC的斜邊AC為直角邊,畫第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個(gè)等腰Rt△ADE,…,依此類推,第n個(gè)等腰直角三角形的面積是()A.2n﹣2 B.2n﹣1 C.2n D.2n+16.如果直角三角形的三條邊為3、4、a,則a的取值可以有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)7.直角三角形的面積為,斜邊上的中線為,則這個(gè)三角形周長為()A. B.C. D.8.如圖,已知1號(hào)、4號(hào)兩個(gè)正方形的面積之和為7,2號(hào)、3號(hào)兩個(gè)正方形的面積之和為4,則a、b、c三個(gè)正方形的面積之和為()A.11 B.15 C.10 D.229.如圖,在長方形紙片中,,.把長方形紙片沿直線折疊,點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長為()A. B. C. D.10.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面米,則小巷的寬度為()A. B. C. D.11.△ABC的三邊分別為,下列條件能推出△ABC是直角三角形的有()①;②;③∠A=∠B∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤;⑥A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)12.如圖,A、B兩點(diǎn)在直線l的兩側(cè),點(diǎn)A到直線l的距離AC=4,點(diǎn)B到直線l的距離BD=2,且CD=6,P為直線CD上的動(dòng)點(diǎn),則的最大值是()A. B. C. D.613.△ABC的三邊的長a、b、c滿足:,則△ABC的形狀為().A.等腰三角形 B.等邊三角形 C.鈍角三角形 D.直角三角形14.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對(duì)折后,點(diǎn)A恰好落在BC上的點(diǎn)D處,若CE=1,AB=4,則下列結(jié)論一定正確的個(gè)數(shù)是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE與△BDF的周長相等;A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)15.在中,,則△ABC是()A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形16.在中,邊上的中線,則的面積為()A.6 B.7 C.8 D.917.如圖,在△ABC,∠C=90°,AD平分∠BAC交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB,垂足恰好是邊AB的中點(diǎn)E,若AD=3cm,則BE的長為()A.cm B.4cm C.3cm D.6cm18.我國古代數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的三角形,如圖所示,已知∠A=90°,BD=4,CF=6,設(shè)正方形ADOF的邊長為,則()A.12 B.16 C.20 D.2419.在四邊形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,則EDC的面積為()A.2﹣2 B.3﹣2 C.2﹣ D.﹣120.我國古代數(shù)學(xué)家趙爽“的勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么的值為().A.49 B.25 C.13 D.121.如圖,△ABC中,AB=AC,AD是∠BAC的平分線.已知AB=5,AD=3,則BC的長為()A.5 B.6 C.8 D.1022.如圖,在四邊形ABCD中,,與的平分線相交于BC邊上的M點(diǎn),則下列結(jié)論:①;②;③;④到AD的距離等于BC的;⑤為BC的中點(diǎn);其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)23.下列長度的三條線段能組成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2, D.5,11,1224.已知,為正數(shù),且,如果以,的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為()A.5 B.25 C.7 D.1525.將一根24cm的筷子,置于底面直徑為15cm,高8cm的裝滿水的無蓋圓柱形水杯中,設(shè)筷子浸沒在杯子里面的長度為hcm,則h的取值范圍是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm26.小明學(xué)了在數(shù)軸上畫出表示無理數(shù)的點(diǎn)的方法后,進(jìn)行練習(xí):首先畫數(shù)軸,原點(diǎn)為O,在數(shù)軸上找到表示數(shù)2的點(diǎn)A,然后過點(diǎn)A作AB⊥OA,使AB=3(如圖).以O(shè)為圓心,OB的長為半徑作弧,交數(shù)軸正半軸于點(diǎn)P,則點(diǎn)P所表示的數(shù)介于()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間27.如圖,正方形ABCD的邊長為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,…按照此規(guī)律繼續(xù)下去,則S2016的值為()A.()2013 B.()2014 C.()2013 D.()201428.棱長分別為的兩個(gè)正方體如圖放置,點(diǎn)A,B,E在同一直線上,頂點(diǎn)G在棱BC上,點(diǎn)P是棱的中點(diǎn).一只螞蟻要沿著正方體的表面從點(diǎn)A爬到點(diǎn)P,它爬行的最短距離是()A. B. C. D.29.如圖,在矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,那么折痕EF的長為()A.3 B. C. D.930.一個(gè)直角三角形的兩條邊的長度分別為3和4,則它的斜邊長為()A.5 B.4 C. D.4或5【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】結(jié)論①錯(cuò)誤,因?yàn)閳D中全等的三角形有3對(duì);結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯(cuò)誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進(jìn)行判斷.【詳解】連接CF,交DE于點(diǎn)P,如下圖所示結(jié)論①錯(cuò)誤,理由如下:圖中全等的三角形有3對(duì),分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯(cuò)誤,理由如下:∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下:∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴.故選B.【點(diǎn)睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識(shí)點(diǎn),綜合性比較強(qiáng).解決這個(gè)問題的關(guān)鍵在于利用全等三角形的性質(zhì).2.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30°,OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.3.A解析:A【解析】分析:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點(diǎn)F.AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長,則在直角△ABF中利用勾股定理求得AB的長,進(jìn)而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長BP,作AF⊥BP于點(diǎn)F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點(diǎn)睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.4.B解析:B【分析】根據(jù)30°直角三角形的性質(zhì),求出∠ABC的度數(shù),然后根據(jù)角平分線的性質(zhì)求出∠CBD=30°,再根據(jù)30°角所對(duì)的直角三角形性質(zhì),30°角所對(duì)的直角邊等于斜邊的一半,求解即可.【詳解】如圖∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,∵CD=1,∠CDB=30°∴BD=2根據(jù)勾股定理可得BC=∵∠A=30°∴AB=2故選B.【點(diǎn)睛】此題主要考查了30°角直角三角形的性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)題意畫出圖形,再利用30°角所對(duì)直角邊等于斜邊的一半求解.5.A解析:A【分析】連續(xù)使用勾股定理求直角邊和斜邊,然后再求面積,觀察發(fā)現(xiàn)規(guī)律,即可正確作答.【詳解】解:∵△ABC是邊長為1的等腰直角三角形,∴∴第n個(gè)等腰直角三角形的面積是,故答案為A.【點(diǎn)睛】本題的難點(diǎn)是運(yùn)用勾股定理求直角三角形的直角邊,同時(shí)觀察、發(fā)現(xiàn)也是解答本題的關(guān)鍵.6.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認(rèn)a是直角邊還是斜邊.【詳解】解:當(dāng)a是直角三角形的斜邊時(shí),;當(dāng)a為直角三角形的直角邊時(shí),.故選C.【點(diǎn)睛】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.7.D解析:D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計(jì)算即可?!驹斀狻拷猓涸O(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個(gè)三角形周長為:,故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.8.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號(hào)的面積加上2號(hào)的面積,b的面積等于2號(hào)的面積加上3號(hào)的面積,c的面積等于3號(hào)的面積加上4號(hào)的面積,據(jù)此可以求出三個(gè)的面積之和.【詳解】利用勾股定理可得:,,∴故選B【點(diǎn)睛】本題主要考查勾股定理的應(yīng)用,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.9.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長度.10.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的寬度為:0.7+2=2.7(米).故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.11.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對(duì)每個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯(cuò)誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個(gè);故選擇:D.【點(diǎn)睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進(jìn)行判斷三角形是直角三角形.12.C解析:C【解析】試題解析:作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接并延長,與直線的交點(diǎn)即為使得取最大值時(shí)對(duì)應(yīng)的點(diǎn)此時(shí)過點(diǎn)作于點(diǎn)如圖,四邊形為矩形,的最大值為:故答案為:13.D解析:D【分析】由等式可分別得到關(guān)于a、b、c的等式,從而分別計(jì)算得到a、b、c的值,再由的關(guān)系,可推導(dǎo)得到△ABC為直角三角形.【詳解】∵又∵∴∴∴∴△ABC為直角三角形故選:D.【點(diǎn)睛】本題考察了平方、二次根式、絕對(duì)值和勾股定理逆定理的知識(shí);求解的關(guān)鍵是熟練掌握二次根式、絕對(duì)值和勾股定理逆定理,從而完成求解.14.D解析:D【分析】利用等腰直角三角形的相關(guān)性質(zhì)運(yùn)用勾股定理以及對(duì)應(yīng)角度的關(guān)系來推導(dǎo)對(duì)應(yīng)選項(xiàng)的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2,①正確;BD=4-2,②正確;由∠A=∠EDF=45°,則2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正確;△DCE的周長=CD+CE+DE=2+4,△BDF的周長=BD+BF+DF=BD+AB=4+4-2=4+2,④正確;故正確的選項(xiàng)有4個(gè),故選:D.【點(diǎn)睛】本題主要考查等腰直角三角形的相關(guān)性質(zhì)以及勾股定理的運(yùn)用,本題涉及的等腰直角三角形、翻折、勾股定理以及邊角關(guān)系,需要熟練地掌握對(duì)應(yīng)性質(zhì)以及靈活的運(yùn)用.15.D解析:D【分析】根據(jù)題意設(shè)出三邊分別為k、k、k,然后利用勾股定理的逆定理判定三角形為直角三角形,又有BC、AC邊相等,所以三角形為等腰直角三角形.【詳解】設(shè)BC、AC、AB分別為k,k,k,∵k2+k2=(k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故選D.【點(diǎn)睛】本題主要考查了直角三角形的判定,利用設(shè)k法與勾股定理證明三角形是直角三角形是難點(diǎn),也是解題的關(guān)鍵.16.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB=6,∴CD=3,AB=6,∴CD=AD=DB,,,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點(diǎn)睛】本題考查三角形中位線的應(yīng)用,熟練運(yùn)用三角形的中線定義以及綜合分析、解答問題的能力,關(guān)鍵要懂得:在一個(gè)三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個(gè)直角三角形,通過等腰三角形的性質(zhì)和內(nèi)角和定理來證明一個(gè)三是直角三角形.17.A解析:A【分析】先根據(jù)角平分線的性質(zhì)可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根據(jù)直角三角形的性質(zhì)即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點(diǎn),∴AC=AE=AB,所以,∠B=30°.∵DE為AB中線且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故選A.【點(diǎn)睛】本題考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),及勾股定理等知識(shí),熟練掌握全等三角形的判定與性質(zhì)是解答本題的關(guān)鍵.18.D解析:D【分析】設(shè)正方形ADOF的邊長為x,在直角三角形ACB中,利用勾股定理可建立關(guān)于x的方程,整理方程即可.【詳解】解:設(shè)正方形ADOF的邊長為x,由題意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的性質(zhì)、勾股定理等知識(shí);熟練掌握正方形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.19.C解析:C【分析】先過點(diǎn)E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其邊長,最后利用等腰直角三角形,求得EG的長,進(jìn)而得到△EDC的面積.【詳解】解:過點(diǎn)E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,在Rt△BCE和Rt△GCE中,∴Rt△BCE≌Rt△GCE,∴BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45°,∵AB//CD,∴∠ABD=45°,又∵∠A=90°,AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,∵△DEG是等腰直角三角形,∴EG=DG=2﹣,∴△EDC的面積=×DC×EG=×2×(2﹣)=2﹣.故選:C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì),等腰直角三角形的性質(zhì)與判定,全等三角形的判定與性質(zhì),以及勾股定理等知識(shí),解決問題的關(guān)鍵是作輔助線,構(gòu)造直角三角形EDG進(jìn)行求解.20.A解析:A【分析】根據(jù)正方形的面積公式以及勾股定理,結(jié)合圖形進(jìn)行分析發(fā)現(xiàn):大正方形的面積即直角三角形斜邊的平方25,也就是兩條直角邊的平方和是25,四個(gè)直角三角形的面積和是大正方形的面積減去小正方形的面積即2ab=12,據(jù)此即可得結(jié)果.【詳解】根據(jù)題意,結(jié)合勾股定理a2+b2=25,四個(gè)三角形的面積=4×ab=25-1=24,∴2ab=24,聯(lián)立解得:(a+b)2=25+24=49.故選A.21.C解析:C【分析】根據(jù)等腰三角形的三線合一得出∠ADB=90°,再根據(jù)勾股定理得出BD的長,即可得出BC的長.【詳解】在△ABC中,AB=AC,AD是∠BAC的平分線,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根據(jù)勾股定理得:BD===4BC=2BD=2×4=8.故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)及勾股定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.22.C解析:C【分析】過作于,得出,,求出,根據(jù)三角形內(nèi)角和定理求出,即可判斷①;根據(jù)角平分線性質(zhì)求出,,即可判斷④和⑤;由勾股定理求出,,即可判斷③;根據(jù)證,推出,同理得出,即可判斷②.【詳解】解:過作于,與的平分線相交于邊上的點(diǎn),,,,,,,故①正確;平分,,,,同理,,故⑤正確;到的距離等于的一半,故④錯(cuò)誤;由勾股定理得:,,又,,,同理,,故③正確;在和中,,同理,,故②正確;故選:.【點(diǎn)睛】本題考查了角平分線性質(zhì),垂直定義,直角梯形,勾股定理,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.23.C解析:C【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形.最長邊所對(duì)的角為直角.由此判定即可.【詳解】解:A、因?yàn)?2+72≠122,所以三條線段不能組成直角三角形;B、因?yàn)?2+32≠42,所以三條線段不能組成直角三角形;C、因?yàn)?2+2=22,所以三條線段能組成直角三角形;D、因?yàn)?2+112≠122,所以三條線段不能組成直角三角形.故選C.【點(diǎn)睛】此題考查勾股定理逆定理的運(yùn)用,注意數(shù)據(jù)的計(jì)算.24.C解析:C【分析】本題可根據(jù)兩個(gè)非負(fù)數(shù)相加和為0,則這兩個(gè)非負(fù)數(shù)的值均為0解出x、y的值,然后運(yùn)用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點(diǎn):本題綜合考查了勾股定理與非負(fù)數(shù)的性質(zhì)點(diǎn)評(píng):解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.25.C解析:C【分析】筷子浸沒在水中的最短距離為水杯高度,最長距離如下圖,是筷子斜臥于杯中時(shí),利用勾股定理可求得.【詳解】當(dāng)筷子筆直豎立在杯中時(shí),筷子浸沒水中距離最短,為杯高=8cmAD是筷子,AB長是杯子直徑,BC是杯子高,當(dāng)筷子如下圖斜臥于杯中時(shí),浸沒在水中的距離最長由題意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根據(jù)勾股定理,AC=17cm∴8cm≤h≤17cm故選:C【點(diǎn)睛】本題考查勾股定理在實(shí)際生活中的應(yīng)用,解題關(guān)鍵是將題干中生活實(shí)例抽象成數(shù)學(xué)模型,然后再利用相關(guān)知識(shí)求解.26.C解析:C【分析】利用勾股定理求出AB的長,再根據(jù)無理數(shù)的估算即可求得答案.【詳解】由作法過程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=,∴P點(diǎn)所表示的數(shù)就是,∵,∴,即點(diǎn)P所表示的數(shù)介于3和4之間,故選C.【點(diǎn)睛】本題考查了勾股定理和無理數(shù)的估算,熟練掌握勾股定理的內(nèi)容以及無理數(shù)估算的方法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(環(huán)境監(jiān)測技術(shù))污染控制操作試題及答案
- 2026年市場營銷綜合(多渠道營銷)試題及答案
- 2025年高職水利水電建筑工程(水利水電工程)試題及答案
- 2025年高職(鐵道工程技術(shù))鐵路施工綜合測試題及答案
- 2025年高職游戲設(shè)計(jì)(游戲教學(xué)設(shè)計(jì))試題及答案
- 運(yùn)輸管理制度匯編
- 連鎖快捷酒店直營店店長管理手冊上模板
- 養(yǎng)老院老人精神關(guān)懷制度
- 養(yǎng)老院老人檔案管理制度
- 養(yǎng)老院消防安全制度
- 神經(jīng)外科規(guī)范化培訓(xùn)體系綱要
- 互助與團(tuán)隊(duì)精神主題班會(huì)課件
- 制造企業(yè)發(fā)票管理辦法
- 中醫(yī)情志護(hù)理的原則和方法
- 護(hù)士情緒管理課件總結(jié)
- DBJ50-T-200-2024 建筑樁基礎(chǔ)技術(shù)標(biāo)準(zhǔn)
- 新人教版小學(xué)數(shù)學(xué)教材解讀
- 設(shè)備、管道、鋼結(jié)構(gòu)施工方案
- 2021-2026年中國沉香木行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 2024-2030年中國海南省廢水污染物處理資金申請(qǐng)報(bào)告
- 新能源汽車技術(shù) SL03維修手冊(第4章)-電氣-4.2.2~4.2.12電器集成
評(píng)論
0/150
提交評(píng)論