版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、菱形ABCD的周長是8cm,∠ABC=60°,那么這個菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm2、如圖,矩形ABCD中,AB=3,AD=4,將矩形ABCD折疊后,A點的對應(yīng)點落在CD邊上,EF為折痕,A和EF交于G點,當AG+BG取最小值時,此時EF的值為()A. B.3 C.2 D.53、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對4、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點,連接DE,BE,點M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.405、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點A的直線l折疊,使點D落到AB邊上的點處,折痕交CD邊于點E.若點P是直線l上的一個動點,則+PB的最小值_______.2、已知正方形ABCD的一條對角線長為2,則它的面積是______.3、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.4、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.5、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.三、解答題(5小題,每小題10分,共計50分)1、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,,M關(guān)于直線AF對稱.
(1)求證:B,M關(guān)于AE對稱;(2)若的平分線交AE的延長線于G,求證:.2、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點E是邊BC延長線上一點,連接AE、DE,過點C作CF⊥DE于點F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.3、如圖,在中,過點作于點,點在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.4、如圖,已知△ACB中,∠ACB=90°,E是AB的中點,連接EC,過點A作AD∥EC,過點C作CD∥EA,AD與CD交于點D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).5、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落在點E處,AE交CD于點F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說明理由;(2)求△ACF的面積;-參考答案-一、單選題1、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.2、A【解析】【分析】過點作于,由翻折的性質(zhì)知點為的中點,則為的中位線,可知在上運動,當取最小值時,此時與重合,利用勾股定理和相似求出的長即可解決問題.【詳解】解:過點作于,將矩形折疊后,點的對應(yīng)點落在邊上,點為的中點,為的中位線,在上運動,在上運動,當取最小值時,此時與重合,,,,,,,,,在和中,,,,,故選:A.【點睛】本題主要考查了矩形的性質(zhì),翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,解題的關(guān)鍵是證明在上運動.3、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.4、C【解析】【分析】由中點的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點,∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.5、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.二、填空題1、【解析】【分析】不管P點在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當D、P、D'共線時PD+PB最短.【詳解】過點D作DM⊥AB交BA的延長線于點M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點D與點D′關(guān)于直線l對稱,連接BD交直線l于點P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.2、6【解析】【分析】正方形的面積:邊長的平方或兩條對角線之積的一半,根據(jù)公式直接計算即可.【詳解】解:正方形ABCD的一條對角線長為2,故答案為:【點睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對角線之積的一半”是解題的關(guān)鍵.3、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想,掌握正方形的性質(zhì),三角形全等判定與性質(zhì),勾股定理,等腰三角形判定與性質(zhì),分類討論思想是解題關(guān)鍵.4、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學會于轉(zhuǎn)化的思想思考問題.5、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).三、解答題1、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,
∵D、M關(guān)于直線AF對稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關(guān)于AE對稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,F(xiàn)G平分∠EFC,∴∠AFG=90°.∴△AFG為等腰直角三角形,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,勾股定理,三角形的面積等知識,綜合性較強,有一定難度.準確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.2、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進行計算.【詳解】(1)證明:∵DF=EF∴點F為DE的中點又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識,解題的關(guān)鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.3、(1)見解析;(2)見解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職農(nóng)產(chǎn)品貯藏與加工(農(nóng)產(chǎn)品保鮮技術(shù))試題及答案
- 2025年高職民航空中安全保衛(wèi)(航空安全規(guī)范)試題及答案
- 2025年高職第二學年(汽車檢測與維修技術(shù))汽車診斷綜合測試試題及答案
- 2025年高職(護理)急救護理學試題及答案
- 2025年大學大三(導(dǎo)游業(yè)務(wù))帶團技巧實踐測試試題及答案
- 2025年中職工業(yè)機器人技術(shù)基礎(chǔ)(技術(shù)基礎(chǔ)理論)試題及答案
- 2025年大學大一(水利水電工程)水利工程施工技術(shù)應(yīng)用綜合測試題及答案
- 2025年中職新能源汽車(保養(yǎng)規(guī)范)試題及答案
- 2025年大學海洋科學(海洋環(huán)境監(jiān)測)試題及答案
- 2025年大學食品生物技術(shù)(微生物檢測方法)試題及答案
- 江蘇省南通市2025年中考物理試卷(含答案)
- 非車險業(yè)務(wù)拓展創(chuàng)新工作總結(jié)及工作計劃
- 現(xiàn)場缺陷件管理辦法
- 車企核心用戶(KOC)分層運營指南
- 初三語文競賽試題及答案
- 二年級勞動試卷及答案
- 企業(yè)成本管理分析
- 課題申報書:“主渠道”定位下的行政復(fù)議調(diào)解制度建構(gòu)研究
- 砂石采購合同范例
- 《EVA生產(chǎn)流程》課件
- 英語動詞大全100個
評論
0/150
提交評論