滬科版9年級下冊期末試卷(典型題)附答案詳解_第1頁
滬科版9年級下冊期末試卷(典型題)附答案詳解_第2頁
滬科版9年級下冊期末試卷(典型題)附答案詳解_第3頁
滬科版9年級下冊期末試卷(典型題)附答案詳解_第4頁
滬科版9年級下冊期末試卷(典型題)附答案詳解_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm3、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個4、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°5、下列四個圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.6、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°7、如圖是下列哪個立體圖形的主視圖()A. B.C. D.8、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、圓錐的底面直徑是80cm,母線長90cm.它的側面展開圖的圓心角和圓錐的全面積依次是______.2、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、把一個正六邊形繞其中心旋轉,至少旋轉________度,可以與自身重合.4、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.5、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.6、一個盒子中裝有標號為,,,的四個小球,這些球除標號外都相同,從中隨機摸出兩個小球,則摸出的小球標號之和大于的概率為______.7、點(2,-3)關于原點的對稱點的坐標為_____.三、解答題(7小題,每小題0分,共計0分)1、小明每天騎自行車.上學,都要通過安裝有紅、綠燈的4個十字路口.假設每個路口紅燈和綠燈亮的時間相同.(1)小明從家到學校,求通過前2個十字路口時都是綠燈的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學校,通過這4個十字路口時至少有2個綠燈的概率為.(請直接寫出答案)2、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.3、在平面直角坐標系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應點),則稱線段AB是⊙O的關于直線l對稱的“關聯(lián)線段”.例如:在圖1中,線段是⊙O的關于直線l對稱的“關聯(lián)線段”.(1)如圖2,的橫、縱坐標都是整數(shù).①在線段中,⊙O的關于直線y=x+2對稱的“關聯(lián)線段”是_______;②若線段中,存在⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關于直線對稱的“關聯(lián)線段”,直接寫出b的最大值和最小值,以及相應的BC長.4、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.5、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.6、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應的扇形圓心角度數(shù)為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數(shù);(3)已知調查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.7、在所給的的正方形網格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標;(2)畫出以點為中心,旋轉180°后的,并求的面積.-參考答案-一、單選題1、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.3、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.4、A【分析】根據(jù)旋轉的性質求解再利用三角形的內角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點睛】本題考查的是三角形的內角和定理的應用,旋轉的性質,掌握“旋轉前后的對應角相等”是解本題的關鍵.5、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質:兩直線平行,內錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質等,理解題意,找出相關的角度是解題關鍵.7、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是掌握由三視圖想象幾何體的形狀,首先,應分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀.8、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.二、填空題1、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.2、6【分析】依題意,直角三角形性質,結合題意能夠容納的最大為內切圓,結合內切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質:可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內切圓的性質,重點在理解題意和利用內切圓半徑求解面積;3、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質,根據(jù)圖形特征找到最少旋轉度數(shù)是本題關鍵.4、30【分析】設袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關鍵是用頻率的集中趨勢來估計概率,這個固定的近似值5、【分析】先畫樹狀圖列出所有等可能結果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結果有4種結果,∴關于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關鍵.6、【分析】根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等可能的情況數(shù),其中摸出的小球標號之和大于5的有4種,則摸出的小球標號之和大于5的概率為.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、(-2,3)【分析】根據(jù)“關于原點對稱的點的坐標關系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關于原點的對稱點的坐標是(-2,3).故答案為:

(-2,3).【點睛】本題主要考查點關于原點對稱,解決本題的關鍵是要熟練掌握關于原點對稱點的坐標的關系.三、解答題1、(1),見解析(2)【解析】(1)列表如下第一個十字路口\第二個紅燈綠燈紅燈紅紅紅綠綠燈綠紅綠綠∵共有4種等可能情形,滿足條件的有1種.∴通過前2個十字路口時都是綠燈的概率.(2)畫樹狀圖如圖,表示紅燈,表示綠燈,∵共有16種等可能情形,滿足條件的有11種.小明從家到學校,通過這4個十字路口時至少有2個綠燈的概率為故答案為:【點睛】本題考查了列表法或畫樹狀圖法求概率,掌握列表法或畫樹狀圖法是解題的關鍵.2、見解析【分析】根據(jù)幾何體的三視圖畫法作圖.【詳解】解:如圖,.【點睛】此題考查了畫小正方體組成的幾何體的三視圖,正確掌握幾何體的三視圖的畫圖方法是解題的關鍵.3、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據(jù)題意作出圖象即可解答;②根據(jù)“關聯(lián)線段”的定義,可確定線段A2B2存在“關聯(lián)線段”,再分情況解答即可;(2)設與AB對應的“關聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最??;然后分別畫出圖形求解即可;【詳解】解:(1)①作出各點關于直線y=x+2的對稱點,如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”;直線A2B2的解析式是y=-x+5,且,故A2B2是⊙O的關于直線y=x+2對稱的“關聯(lián)線段”;當A2B2是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,且對應兩個端點分別是(0,1)與(1,0)時,m=3,當A2B2是⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,且對應兩個端點分別是(0,-1)與(-1,0)時,m=2,故答案為:2或3.(2)設與AB對應的“關聯(lián)線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最?。划旤cA’(1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(4,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;當點A’(-1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(2,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=;即綜上,b的最大值為,此時BC=;b的最小值為,此時BC=.【點睛】本題是新定義綜合題,主要考查了一次函數(shù)圖象上點的坐標特點、圓的有關知識、等邊三角形的判定和性質、勾股定理、軸對稱的性質等知識,正確理解新定義的含義、靈活應用數(shù)形結合思想是解題的關鍵.4、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質,垂徑定理,圓周角定理,勾股定理,解決本題的關鍵是掌握切線的判定與性質.5、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、(1)100,126°,條形統(tǒng)計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論