解析卷-滬科版9年級下冊期末測試卷及參考答案詳解【研優(yōu)卷】_第1頁
解析卷-滬科版9年級下冊期末測試卷及參考答案詳解【研優(yōu)卷】_第2頁
解析卷-滬科版9年級下冊期末測試卷及參考答案詳解【研優(yōu)卷】_第3頁
解析卷-滬科版9年級下冊期末測試卷及參考答案詳解【研優(yōu)卷】_第4頁
解析卷-滬科版9年級下冊期末測試卷及參考答案詳解【研優(yōu)卷】_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.2、如圖,將一個棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們?nèi)糠湃胍粋€不透明盒子中搖勻,隨機取出一個小正方體,有三個面被涂色的概率為()A. B. C. D.3、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.4、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、如圖是下列哪個立體圖形的主視圖()A. B.C. D.6、把7個同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.7、下列關(guān)于隨機事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率8、如圖,幾何體的左視圖是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在平面直角坐標系中,將點繞坐標原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標是___________.2、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.3、如圖,AB是半圓O的直徑,AB=4,點C,D在半圓上,OC⊥AB,,點P是OC上的一個動點,則BP+DP的最小值為______.4、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.5、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.6、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.7、小明和小強玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機出手一次,平局的概率為______.三、解答題(7小題,每小題0分,共計0分)1、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設(shè)計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標上字母P.2、對于平面直角坐標系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關(guān)聯(lián)點”.已知點,,,.(1)直線l經(jīng)過點A,的半徑為2,在點A,C,D中,直線l和的“關(guān)聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關(guān)聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關(guān)聯(lián)點”在直線上,請直接寫出b的取值范圍.3、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.4、如圖,和中,,,,連接,點M,N,P分別是的中點.(1)請你判斷的形狀,并證明你的結(jié)論.(2)將繞點A旋轉(zhuǎn),若,請直接寫出周長的最大值與最小值.5、在直角坐標平面內(nèi),三個頂點的坐標分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.6、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.7、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.-參考答案-一、單選題1、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.2、B【分析】直接根據(jù)題意得出恰有三個面被涂色的有8個,再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個,恰有三個面被涂色的為棱長為3的正方體頂點處的8個小正方體;故取得的小正方體恰有三個面被涂色.的概率為.故選:B.【點睛】此題主要考查了概率公式的應用,正確得出三個面被涂色.小立方體的個數(shù)是解題關(guān)鍵.3、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.4、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.5、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.6、C【分析】利用俯視圖,寫出符合題意的小正方體的個數(shù),即可判斷.【詳解】A、當7個小正方體如圖分布時,符合題意,本選項不符合題意.B、當7個小正方體如圖分布時,符合題意,本選項不符合題意.C、沒有符合題意的幾何圖形,本選項符合題意.D、當7個小正方體如圖分布時,符合題意,本選項不符合題意.故選:C.【點睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學生的空間想象力和抽象思維能力.7、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.二、填空題1、【分析】繞坐標原點順時針旋轉(zhuǎn)即關(guān)于原點中心對稱,找到關(guān)于原點中心對稱的點的坐標即可,根據(jù)關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:將點繞坐標原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標是故答案為:【點睛】本題考查了求一個點關(guān)于原點中心對稱的點的坐標,掌握關(guān)于原點中心對稱的點的坐標特征是解題的關(guān)鍵.關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù).2、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關(guān)鍵是作出相應輔助線.3、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是學會用轉(zhuǎn)化的思想思考問題.4、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關(guān)鍵.5、【分析】抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點數(shù)小于5的概率.【詳解】解:∵抽出的牌的點數(shù)小于5有1,2,3,4共4個,總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點數(shù)小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應輔助線,綜合運用這些知識點是解題關(guān)鍵.7、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強平局的概率為:,故答案為:.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題1、(1)見解析(2)見解析【分析】(1)根據(jù)軸對稱圖形,中心對稱圖形的性質(zhì)畫出圖形即可.(2)根據(jù)中心對稱圖形的定義畫出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點P即為所求作.【點睛】本題考查利用旋轉(zhuǎn)變換設(shè)計圖案,正方形的性質(zhì),軸對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題.2、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關(guān)聯(lián)點”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時,和有“關(guān)聯(lián)點”,進而求得半徑r的取值范圍;(3)根據(jù)關(guān)聯(lián)點以及切線的性質(zhì),直徑所對的角是直角,找到點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,進而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關(guān)聯(lián)點”是點故答案為:(2)如圖,根據(jù)題意與有“關(guān)聯(lián)點”,則與相切,且與相離,是等邊三角形為的中點,則當與相切時,則點為的內(nèi)心半徑r的取值范圍為:(3)如圖,設(shè)和直線m的“關(guān)聯(lián)點”為,,交軸于點,是的切線,的圓心為點,半徑為t,軸是的切線點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,則點,在直線上,當直線與相切時,即當點與點重合時,最大,此時與軸交于點,當點運動到點時,則過點,則解得b的取值范圍為:【點睛】本題考查了切線的性質(zhì)與判定,切線長定理,勾股定理,一次函數(shù)與坐標軸交點問題,等邊三角形的性質(zhì),等邊三角形的內(nèi)心的性質(zhì),掌握以上知識是解題的關(guān)鍵.3、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)是等腰直角三角形,證明見解析(2)周長最小值為。最大值為【分析】(1)連接BD,CE,根據(jù)SAS證明得BD=CE,根據(jù)三角形中位線性質(zhì)可證明PM=PN;,進而可得結(jié)論;(2)當BD最小時即點D在AB上,此時周長最小,當點D在BA的延長線上時,BD最大,此時周長最大,均為,求出BD的長即可解決問題.(1)連接BD,CE,如圖,∵,,,∴∴∴∴BD=CE,∵點M,N,P分別是的中點∴//,,PN//BD,PN=BD∴PM=PN,∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴∴的周長為∵∴的周長為當BD最小時即點D在AB上,此時周長最小,∵AB=8,AD=3∴BD的最小值為AB-AD=8-3=5∴周長最小為當點D在BA的延長線上時,BD最大,此時周長最大,∴BD=AB+AD=8+3=11∴周長最大為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形中位線定理的應用等知識,熟練掌握相關(guān)知識是解答本題的關(guān)鍵.5、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質(zhì)得出對應點位置,從而得到點的坐標;(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進行位似變換的作圖是解題的關(guān)鍵.6、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為AB=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結(jié)論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點睛】本題考查作圖-應用與設(shè)計,等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題.7、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論