人教版初一數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題卷含答案_第1頁
人教版初一數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題卷含答案_第2頁
人教版初一數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題卷含答案_第3頁
人教版初一數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題卷含答案_第4頁
人教版初一數(shù)學(xué)下冊(cè)相期末壓軸題易錯(cuò)題卷含答案_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.如圖所示,在直角坐標(biāo)系中,已知,,將線段平移至,連接、、、,且,點(diǎn)在軸上移動(dòng)(不與點(diǎn)、重合).(1)直接寫出點(diǎn)的坐標(biāo);(2)點(diǎn)在運(yùn)動(dòng)過程中,是否存在的面積是的面積的3倍,如果存在請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在請(qǐng)說明理由;(3)點(diǎn)在運(yùn)動(dòng)過程中,請(qǐng)寫出、、三者之間存在怎樣的數(shù)量關(guān)系,并說明理由.解析:(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC【分析】(1)由點(diǎn)的坐標(biāo)的特點(diǎn),確定出FC=2,OF=6,得出C(2,6);(2)分點(diǎn)D在線段OA和在OA延長(zhǎng)線兩種情況進(jìn)行計(jì)算;(3)分點(diǎn)D在線段OA上時(shí),∠OCD+∠DBA=∠BDC和在OA延長(zhǎng)線∠OCD-∠DBA=∠BDC兩種情況進(jìn)行計(jì)算.【詳解】解:(1)如圖,過點(diǎn)C作CF⊥y軸,垂足為F,過B作BE⊥x軸,垂足為E,∵A(6,0),B(8,6),∴FC=AE=8-6=2,OF=BE=6,∴C(2,6);(2)設(shè)D(x,0),當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),若點(diǎn)D在線段OA上,∵OD=3AD,∴×6x=3××6(6-x),∴x=,∴D(,0);若點(diǎn)D在線段OA延長(zhǎng)線上,∵OD=3AD,∴×6x=3××6(x-6),∴x=9,∴D(9,0);(3)如圖,過點(diǎn)D作DE∥OC,由平移的性質(zhì)知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若點(diǎn)D在線段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若點(diǎn)D在線段OA延長(zhǎng)線上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了點(diǎn)三角形面積的計(jì)算方法,平移的性質(zhì),平行線的性質(zhì)和判定,解本題的關(guān)鍵是分點(diǎn)D在線段OA上,和OA延長(zhǎng)線上兩種情況.2.問題情境:在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長(zhǎng)度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1﹣x2|;(應(yīng)用):(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長(zhǎng)度為.(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為.(拓展):我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.解析:【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點(diǎn)之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點(diǎn)之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長(zhǎng)度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點(diǎn)D的坐標(biāo)為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當(dāng)點(diǎn)Q的坐標(biāo)為(2,0)時(shí),d(P,Q)=|3﹣2|+|3﹣0|=4;當(dāng)點(diǎn)Q的坐標(biāo)為(﹣2,0)時(shí),d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點(diǎn)睛】本題是三角形綜合題目,考查了新定義、兩點(diǎn)間的距離公式、三角形面積等知識(shí),讀懂題意并熟練運(yùn)用兩點(diǎn)間的距離及兩點(diǎn)之間的折線距離公式是解題的關(guān)鍵.3.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.解析:(1)點(diǎn),點(diǎn);12;(2)存在,點(diǎn)的坐標(biāo)為和;(3)∠OFC=∠FOB-∠FCD,見解析.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);(2)設(shè)點(diǎn)E的坐標(biāo)為(x,0),根據(jù)△DEC的面積是△DEB面積的2倍和三角形面積公式得到,解得x=1或x=7,然后寫出點(diǎn)E的坐標(biāo);(3)分類討論:當(dāng)點(diǎn)F在線段BD上,作FM∥AB,根據(jù)平行線的性質(zhì)由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,則∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同樣得到當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,∠OFC=∠FCD-∠FOB;當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【詳解】解:(1)∵點(diǎn)A,B的坐標(biāo)分別是(-2,0),(4,0),現(xiàn)同時(shí)將點(diǎn)A、B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度得到A,B的對(duì)應(yīng)點(diǎn)C,D,∴點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);四邊形ABDC的面積=2×(4+2)=12;(2)存在.設(shè)點(diǎn)E的坐標(biāo)為(x,0),∵△DEC的面積是△DEB面積的2倍,,解得x=1或x=7,∴點(diǎn)E的坐標(biāo)為(1,0)和(7,0);(3)當(dāng)點(diǎn)F在線段BD上,作FM∥AB,如圖1,∵M(jìn)F∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,作FN∥AB,如圖2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同樣得到當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.4.如圖,已知,,且滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過作軸于,若,且,求點(diǎn)的坐標(biāo).解析:(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點(diǎn)C坐標(biāo),進(jìn)而由△ACD面積求出D點(diǎn)坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點(diǎn)坐標(biāo),同理求出F點(diǎn)坐標(biāo),再由GE=12求出G點(diǎn)坐標(biāo),根據(jù)求出PG的長(zhǎng)即可求P點(diǎn)坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點(diǎn)睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運(yùn)用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.5.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對(duì)應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動(dòng),請(qǐng)直接寫出的數(shù)量關(guān)系.解析:(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點(diǎn)的坐標(biāo);(2)先計(jì)算出S梯形OBDC=5,再討論:當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),S△POC的最小值=2,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當(dāng)點(diǎn)P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質(zhì)得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上時(shí),如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點(diǎn)M是y軸上一點(diǎn)∴點(diǎn)M的坐標(biāo)為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)B時(shí),△PCO的面積最小,為當(dāng)點(diǎn)運(yùn)動(dòng)到端點(diǎn)D時(shí),△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí),點(diǎn)睛:本題主要考查坐標(biāo)與圖形的性質(zhì)及三角形的面積.利用分類討論思想,并構(gòu)造輔助線利用平行線的性質(zhì)推理是解題的關(guān)鍵.6.已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A滿足,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.(1)則a=,b=,點(diǎn)C坐標(biāo)為;(2)如圖1,點(diǎn)D(m,n)在線段BC上,求m,n滿足的關(guān)系式;(3)如圖2,E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠BOG=∠AOB,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過程中,的值是否會(huì)發(fā)生變化?若變化請(qǐng)說明理由,若不變,請(qǐng)求出其值.解析:(1);(2);(3)不變,值為2.【分析】(1)根據(jù),即可得出a,b的值,再根據(jù)平移的性質(zhì)得出,因?yàn)辄c(diǎn)C在y軸負(fù)半軸,即可得出點(diǎn)C的坐標(biāo);(2)過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD,在中用等面積法即可求出m和n的關(guān)系式;(3)分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,根據(jù)平行線的性質(zhì),得出進(jìn)而得到的值.【詳解】(1)解:∵,∴∴∵且C在y軸負(fù)半軸上,∴,故填:;(2)如圖1,過點(diǎn)D分別作DM⊥x軸于點(diǎn)M,DN⊥y軸于點(diǎn)N,連接OD.∵AB⊥x軸于點(diǎn)B,且點(diǎn)A,D,C三點(diǎn)的坐標(biāo)分別為:∴,∴,又∵S△BOC=S△BOD+S△COD=OB×MD+OC×ND,∴;(3)解:的值不變,值為2.理由如下:如圖所示,分別過點(diǎn)E,F(xiàn)作EP∥OA,F(xiàn)Q∥OA分別交y軸于點(diǎn)P,點(diǎn)Q,∵線段OC是由線段AB平移得到,∴BC∥OA,又∵EP∥OA,∴EP∥BC,∴∠GCF=∠PEC,∵EP∥OA,∴∠AOE=∠OEP,∴∠OEC=∠OEP+∠PEC=∠AOE+∠GCF,同理:∠OFC=∠AOF+∠GCF,又∵∠AOB=∠BOG,∴∠OFC=2∠AOE+∠GCF,∴.【點(diǎn)睛】本題主要考查了非負(fù)數(shù)的性質(zhì),坐標(biāo)與圖形,平行線的判定與性質(zhì),以及平移的性質(zhì),解決問題的關(guān)鍵是作輔助線,運(yùn)用等面積法,角的和差關(guān)系以及平行線的性質(zhì)進(jìn)行求解.7.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請(qǐng)寫出你的猜想,并加以證明.解析:(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點(diǎn)作,過點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點(diǎn)作,過點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.8.如圖①,將一張長(zhǎng)方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.9.如圖,已知直線射線,.是射線上一動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.作,交直線于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請(qǐng)說明理由.解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),反向延長(zhǎng)CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等是解題的關(guān)鍵.10.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.11.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫出∠M與∠BED之間的數(shù)量關(guān)系解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).12.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.13.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請(qǐng)直接寫出答案,用含的式子表示).解析:(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.14.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論