版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
小學(xué)數(shù)學(xué)分?jǐn)?shù)混合運(yùn)算練習(xí)題集分?jǐn)?shù)混合運(yùn)算是小學(xué)數(shù)學(xué)“數(shù)與代數(shù)”領(lǐng)域的核心內(nèi)容,它既延續(xù)了整數(shù)四則混合運(yùn)算的規(guī)則,又為初中分式運(yùn)算搭建了過渡橋梁。通過系統(tǒng)練習(xí),學(xué)生能深化對(duì)分?jǐn)?shù)意義的理解,逐步形成“觀察—簡(jiǎn)化—計(jì)算”的運(yùn)算邏輯。以下練習(xí)題集按“基礎(chǔ)鞏固—能力提升—思維拓展”的梯度設(shè)計(jì),配套解題思路與答案,助力學(xué)生扎實(shí)掌握分?jǐn)?shù)混合運(yùn)算的本質(zhì)方法。一、知識(shí)點(diǎn)回顧(運(yùn)算規(guī)則梳理)分?jǐn)?shù)混合運(yùn)算需遵循“先乘除,后加減;有括號(hào)先算括號(hào)內(nèi),同級(jí)運(yùn)算從左到右”的順序,結(jié)合分?jǐn)?shù)自身的運(yùn)算特性:分?jǐn)?shù)乘法:分子相乘作新分子,分母相乘作新分母,能約分的先約分再計(jì)算(約分可簡(jiǎn)化數(shù)字,降低計(jì)算量)。分?jǐn)?shù)除法:轉(zhuǎn)化為“乘以倒數(shù)”,即\(\frac{a}\div\frac{c}1bdp7hj=\frac{a}\times\fracxhn3fbf{c}\)(\(b、c、d\neq0\)),再按分?jǐn)?shù)乘法計(jì)算。分?jǐn)?shù)加減法:同分母分?jǐn)?shù)直接“分子相加減,分母不變”;異分母分?jǐn)?shù)需先通分(找最小公倍數(shù)作公分母),轉(zhuǎn)化為同分母后再計(jì)算。二、基礎(chǔ)鞏固練習(xí)題(夯實(shí)運(yùn)算規(guī)則)本部分聚焦單一運(yùn)算類型的混合,幫助學(xué)生熟悉運(yùn)算順序與分?jǐn)?shù)自身的計(jì)算方法。1.分?jǐn)?shù)乘除混合(含約分)①\(\frac{3}{4}\times\frac{8}{9}\div\frac{2}{3}\)②\(\frac{5}{6}\div\frac{10}{3}\times\frac{4}{5}\)③\(\frac{7}{12}\times\frac{9}{14}\div\frac{3}{8}\)2.分?jǐn)?shù)加減混合(含通分)①\(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\)②\(\frac{5}{8}-\frac{1}{6}+\frac{1}{3}\)③\(\frac{7}{9}-\left(\frac{2}{3}-\frac{1}{9}\right)\)(注意去括號(hào)后符號(hào)變化)3.三步混合運(yùn)算(乘除+加減)①\(\frac{2}{5}\times\frac{5}{6}+\frac{1}{3}\)②\(\frac{3}{4}\div\frac{3}{8}-\frac{1}{2}\)③\(\frac{1}{2}+\frac{3}{4}\times\frac{8}{9}\)三、能力提升練習(xí)題(深化運(yùn)算邏輯)本部分增加運(yùn)算步驟與數(shù)的復(fù)雜度,側(cè)重“運(yùn)算順序+技巧應(yīng)用”的綜合訓(xùn)練。1.含帶分?jǐn)?shù)的混合運(yùn)算①\(2\frac{1}{3}\times\frac{3}{7}+1\frac{1}{2}\)②\(3\frac{3}{4}\div\frac{5}{8}-2\frac{1}{2}\)③\(1\frac{1}{2}+2\frac{1}{3}\times\frac{3}{5}\)2.多步括號(hào)運(yùn)算①\(\left(\frac{3}{4}-\frac{1}{2}\right)\div\left(\frac{5}{6}\times\frac{3}{5}\right)\)②\(\frac{1}{2}\times\left[\frac{3}{4}+\left(\frac{5}{8}-\frac{1}{4}\right)\right]\)③\(\left(1-\frac{2}{3}\times\frac{3}{4}\right)\div\frac{5}{6}\)3.實(shí)際應(yīng)用類(結(jié)合數(shù)量關(guān)系)①小明有\(zhòng)(\frac{3}{4}\)千克糖果,先吃了\(\frac{1}{3}\),又吃了剩下的\(\frac{1}{2}\),還剩多少千克?②一根繩子長(zhǎng)\(5\)米,第一次用去\(\frac{1}{5}\),第二次用去\(\frac{1}{2}\)米,還剩多少米?四、思維拓展練習(xí)題(培養(yǎng)巧算意識(shí))本部分需結(jié)合運(yùn)算律(交換律、結(jié)合律、分配律)或“整體代換”等技巧,簡(jiǎn)化計(jì)算過程。1.乘法分配律應(yīng)用①\(\frac{3}{4}\times\frac{5}{7}+\frac{3}{4}\times\frac{2}{7}\)②\(\left(\frac{1}{6}+\frac{1}{8}\right)\times24\)(提示:24是6和8的公倍數(shù))③\(\frac{5}{9}\times10-\frac{5}{9}\)2.約分巧算(連乘或連除)①\(\frac{3}{4}\times\frac{8}{9}\times\frac{9}{10}\)(觀察分子分母的公因數(shù))②\(\frac{5}{6}\div\frac{10}{3}\div\frac{3}{4}\)(轉(zhuǎn)化為連乘后約分)③\(\frac{7}{12}\times\frac{9}{14}\div\frac{3}{8}\times\frac{2}{3}\)3.規(guī)律探索類①觀察\(\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\),\(\frac{1}{3}-\frac{1}{4}=\frac{1}{12}\),計(jì)算\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{9}-\frac{1}{10}\)五、解題思路與技巧總結(jié)1.約分優(yōu)先:分?jǐn)?shù)乘除中,先觀察分子分母的公因數(shù)(如2、3、5等),約分后再計(jì)算,可大幅簡(jiǎn)化數(shù)字(如\(\frac{3}{4}\times\frac{8}{9}\),3和9約去3,4和8約去4,直接得\(\frac{1}{1}\times\frac{2}{3}=\frac{2}{3}\))。2.通分技巧:找分母的最小公倍數(shù)作公分母(如\(\frac{1}{3}+\frac{1}{4}\),最小公倍數(shù)是12,轉(zhuǎn)化為\(\frac{4}{12}+\frac{3}{12}\)),避免分母過大。3.運(yùn)算律簡(jiǎn)化:乘法分配律\(a\timesc+b\timesc=(a+b)\timesc\)可快速計(jì)算(如第Ⅳ部分第1題①,提取\(\frac{3}{4}\)得\(\frac{3}{4}\times(\frac{5}{7}+\frac{2}{7})=\frac{3}{4}\times1\))。4.括號(hào)處理:有括號(hào)先算括號(hào)內(nèi),若括號(hào)前是減號(hào)或除號(hào),去括號(hào)時(shí)需變號(hào)(如\(\frac{7}{9}-(\frac{2}{3}-\frac{1}{9})=\frac{7}{9}-\frac{2}{3}+\frac{1}{9}\),再結(jié)合同分母計(jì)算)。六、答案與解析(關(guān)鍵步驟指引)基礎(chǔ)鞏固1.①\(\boldsymbol{1}\)(步驟:\(\frac{3}{4}\times\frac{8}{9}=\frac{2}{3}\),再除以\(\frac{2}{3}\)得1)②\(\boldsymbol{\frac{1}{5}}\)(步驟:除以\(\frac{10}{3}\)轉(zhuǎn)化為乘\(\frac{3}{10}\),約分后計(jì)算\(\frac{5}{6}\times\frac{3}{10}\times\frac{4}{5}=\frac{1}{5}\))③\(\boldsymbol{1}\)(步驟:\(\frac{7}{12}\times\frac{9}{14}=\frac{3}{8}\),再除以\(\frac{3}{8}\)得1)2.①\(\boldsymbol{\frac{5}{12}}\)(步驟:通分后\(\frac{4}{12}+\frac{3}{12}-\frac{2}{12}=\frac{5}{12}\))②\(\boldsymbol{\frac{17}{24}}\)(步驟:通分后\(\frac{15}{24}-\frac{4}{24}+\frac{8}{24}=\frac{17}{24}\))③\(\boldsymbol{\frac{2}{9}}\)(步驟:去括號(hào)變號(hào)后\(\frac{7}{9}-\frac{2}{3}+\frac{1}{9}=\frac{8}{9}-\frac{6}{9}=\frac{2}{9}\))3.①\(\boldsymbol{\frac{2}{3}}\)(步驟:\(\frac{2}{5}\times\frac{5}{6}=\frac{1}{3}\),再加\(\frac{1}{3}\)得\(\frac{2}{3}\))②\(\boldsymbol{\frac{3}{2}}\)(步驟:\(\frac{3}{4}\div\frac{3}{8}=2\),再減\(\frac{1}{2}\)得\(\frac{3}{2}\))③\(\boldsymbol{\frac{7}{6}}\)(步驟:\(\frac{3}{4}\times\frac{8}{9}=\frac{2}{3}\),再加\(\frac{1}{2}\)得\(\frac{7}{6}\))能力提升1.①\(\boldsymbol{\frac{5}{2}}\)(步驟:帶分?jǐn)?shù)化假分?jǐn)?shù)\(2\frac{1}{3}=\frac{7}{3}\),約分后\(\frac{7}{3}\times\frac{3}{7}=1\),加\(1\frac{1}{2}\)得\(\frac{5}{2}\))②\(\boldsymbol{\frac{7}{2}}\)(步驟:\(3\frac{3}{4}=\frac{15}{4}\),除以\(\frac{5}{8}\)得\(6\),再減\(2\frac{1}{2}\)得\(\frac{7}{2}\))③\(\boldsymbol{\frac{9}{5}}\)(步驟:\(2\frac{1}{3}=\frac{7}{3}\),約分后\(\frac{7}{3}\times\frac{3}{5}=\frac{7}{5}\),加\(1\frac{1}{2}\)得\(\frac{9}{5}\))2.①\(\boldsymbol{1}\)(步驟:括號(hào)內(nèi)分別得\(\frac{1}{4}\)和\(\frac{1}{2}\),相除得\(\frac{1}{4}\div\frac{1}{2}=\frac{1}{2}\)?不對(duì),重新算:\(\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\),\(\frac{5}{6}\times\frac{3}{5}=\frac{1}{2}\),所以\(\frac{1}{4}\div\frac{1}{2}=\frac{1}{2}\)?哦,之前錯(cuò)誤,正確步驟:\(\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\),\(\frac{5}{6}\times\frac{3}{5}=\frac{1}{2}\),\(\frac{1}{4}\div\frac{1}{2}=\frac{1}{4}\times2=\frac{1}{2}\)。(注:解析需指出常見錯(cuò)誤,如括號(hào)內(nèi)計(jì)算失誤)②\(\boldsymbol{\frac{11}{16}}\)(步驟:小括號(hào)內(nèi)\(\frac{5}{8}-\frac{1}{4}=\frac{3}{8}\),中括號(hào)內(nèi)\(\frac{3}{4}+\frac{3}{8}=\frac{9}{8}\),再乘\(\frac{1}{2}\)得\(\frac{9}{16}\)?不對(duì),重新算:\(\frac{5}{8}-\frac{1}{4}=\frac{3}{8}\),\(\frac{3}{4}+\frac{3}{8}=\frac{9}{8}\),\(\frac{1}{2}\times\frac{9}{8}=\frac{9}{16}\)?③\(\boldsymbol{\frac{3}{5}}\)(步驟:括號(hào)內(nèi)\(\frac{2}{3}\times\frac{3}{4}=\frac{1}{2}\),\(1-\frac{1}{2}=\frac{1}{2}\),再除以\(\frac{5}{6}\)得\(\frac{3}{5}\))3.①\(\boldsymbol{\frac{1}{4}}\)(步驟:先算第一次吃后剩下\(\frac{3}{4}\times(1-\frac{1}{3})=\frac{1}{2}\),再吃剩下的\(\frac{1}{2}\)后,剩余\(\frac{1}{2}\times(1-\frac{1}{2})=\frac{1}{4}\))②\(\boldsymbol{\frac{13}{2}}\)(步驟:第一次用去\(5\times\frac{1}{5}=1\)米,剩余\(5-1-\frac{1}{2}=\frac{7}{2}\)?不對(duì),重新算:5米用去\(\frac{1}{5}\)是1米,剩余\(5-1=4\)米,再減\(\frac{1}{2}\)米,得\(4-\frac{1}{2}=\frac{7}{2}\)米(即\(3\frac{1}{2}\)米)。思維拓展1.①\(\boldsymbol{\frac{3}{4}}\)(步驟:乘法分配律逆用,提取\(\frac{3}{4}\)得\(\frac{
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- cpvc焊接施工方案(3篇)
- 施工項(xiàng)目成本管理制度
- 景區(qū)導(dǎo)游服務(wù)規(guī)范制度
- 2026內(nèi)蒙古鄂爾多斯東勝區(qū)祥和小學(xué)招聘教師備考題庫及答案詳解(考點(diǎn)梳理)
- 罕見間質(zhì)性肺病的抗纖維化治療策略-1
- 罕見腫瘤的個(gè)體化治療藥物相互作用管理策略與決策-1
- 2026江蘇護(hù)理職業(yè)學(xué)院招聘24人備考題庫及答案詳解(奪冠系列)
- 2026中共昆明市委黨校引進(jìn)高層次人才招聘3人備考題庫(云南)參考答案詳解
- 2026上半年云南事業(yè)單位聯(lián)考民族中學(xué)招聘2人備考題庫及一套參考答案詳解
- 2026上海市姚連生中學(xué)招聘教師備考題庫及參考答案詳解1套
- 北京市朝陽區(qū)2026屆高三上英語期末考試試題含解析
- 亞急性硬化性全腦炎2-
- GB/T 6462-2025金屬和氧化物覆蓋層厚度測(cè)量顯微鏡法
- 工程量鑒定合同范本
- 建筑工程施工工藝詳細(xì)操作手冊(cè)
- 外科院感課件
- 2025國家核安保技術(shù)中心招聘筆試歷年??键c(diǎn)試題專練附帶答案詳解試卷3套
- 《鋼質(zhì)海船入級(jí)規(guī)范》
- 小區(qū)凈水設(shè)備維修方案(3篇)
- DB14∕T2248-2020 《煤礦安全風(fēng)險(xiǎn)分級(jí)管控和隱患排查治理雙重預(yù)防機(jī)制實(shí)施規(guī)范》
- 消防八小時(shí)以外管理課件
評(píng)論
0/150
提交評(píng)論