2024年安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷帶答案詳解(綜合題)_第1頁(yè)
2024年安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷帶答案詳解(綜合題)_第2頁(yè)
2024年安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷帶答案詳解(綜合題)_第3頁(yè)
2024年安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷帶答案詳解(綜合題)_第4頁(yè)
2024年安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷帶答案詳解(綜合題)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省天長(zhǎng)市中考數(shù)學(xué)??键c(diǎn)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°2、若點(diǎn)P(2,)與點(diǎn)Q(,)關(guān)于原點(diǎn)對(duì)稱,則m+n的值分別為(

)A. B. C.1 D.53、下列圖形中,既是中心對(duì)稱圖形又是抽對(duì)稱圖形的是()A. B. C. D.4、如圖,邊長(zhǎng)為5的等邊三角形中,M是高所在直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到,連接.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段長(zhǎng)度的最小值是()A. B.1 C.2 D.5、下列汽車標(biāo)志中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,AB為的直徑,,BC交于點(diǎn)D,AC交于點(diǎn)E,.下列結(jié)論正確的是(

)A. B.C. D.劣弧是劣弧的2倍2、如圖,在的網(wǎng)格中,點(diǎn),,,,均在網(wǎng)格的格點(diǎn)上,下面結(jié)論正確的有(

)A.點(diǎn)是的外心 B.點(diǎn)是的外心C.點(diǎn)是的外心 D.點(diǎn)是的外心3、下列關(guān)于x的方程的說(shuō)法正確的是()A.一定有兩個(gè)實(shí)數(shù)根 B.可能只有一個(gè)實(shí)數(shù)根C.可能無(wú)實(shí)數(shù)根 D.當(dāng)時(shí),方程有兩個(gè)負(fù)實(shí)數(shù)根4、下列四個(gè)說(shuō)法中,不正確的是(

)A.一元二次方程有實(shí)數(shù)根B.一元二次方程有實(shí)數(shù)根C.一元二次方程有實(shí)數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實(shí)數(shù)根5、下列說(shuō)法正確的是(

)A.圓是軸對(duì)稱圖形,它有無(wú)數(shù)條對(duì)稱軸B.圓的半徑、弦長(zhǎng)的一半、弦上的弦心距能組成一個(gè)直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長(zhǎng)相等,則弦所對(duì)的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、中國(guó)“一帶一路”倡議給沿線國(guó)家?guī)?lái)很大的經(jīng)濟(jì)效益.若沿線某地區(qū)居民2017年人均收入300美元,預(yù)計(jì)2019年人均收入將達(dá)到432美元,則2017年到2019年該地區(qū)居民年人均收入增長(zhǎng)率為______________.2、如圖有一拋物線形的拱橋,拱高10米,跨度為40米,則該拋物線的表達(dá)式為______________.3、如圖,,,以為直徑作半圓,圓心為點(diǎn);以點(diǎn)為圓心,為半徑作,過(guò)點(diǎn)作的平行線交兩弧于點(diǎn)、,則陰影部分的面積是________.4、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點(diǎn)O與⊙A的位置關(guān)系是______.5、過(guò)年時(shí)包了100個(gè)餃子,其中有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是_____.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,A,B兩點(diǎn)被池塘隔開,在AB外取一點(diǎn)C,連接AC,BC,在AC上取點(diǎn)M,使AM=3MC,作MN∥AB交BC于點(diǎn)N,量得MN=38m,求AB的長(zhǎng).2、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).五、解答題(4小題,每小題10分,共計(jì)40分)1、(1)解方程:(2)我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中記載:“今有宛田,下周三十步,徑十六步,問(wèn)為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長(zhǎng),徑是指扇形所在圓的直徑.求這口宛田的面積.2、如圖1,圖2,圖3的網(wǎng)格均由邊長(zhǎng)為1的小正方形組成,圖1是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個(gè)形狀、大小完全相同的直角三角形組成,趙爽利用這個(gè)“弦圖”對(duì)勾股定理作出了證明,是中國(guó)古代數(shù)學(xué)的一項(xiàng)重要成就,請(qǐng)根據(jù)下列要求解答問(wèn)題.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是對(duì)稱圖形(填“軸”或“中心”).(2)請(qǐng)將“弦圖”中的四個(gè)直角三角形通過(guò)你所學(xué)過(guò)的圖形變換,在圖2,3的方格紙中設(shè)計(jì)另外兩個(gè)不同的圖案,畫圖要求:①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形互不重疊,不必涂陰影;②圖2中所設(shè)計(jì)的圖案(不含方格紙)必須是軸對(duì)稱圖形而不是中心對(duì)稱圖形;圖3中所設(shè)計(jì)的圖案(不含方格紙)必須既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.3、小宇和小偉玩“石頭、剪刀、布”的游戲.這個(gè)游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢(shì)相同不分勝負(fù).如果二人同時(shí)隨機(jī)出手(分別出三種手勢(shì)中的一種手勢(shì))一次,那么小宇獲勝的概率是多少?4、如圖,已知弓形的長(zhǎng),弓高,(,并經(jīng)過(guò)圓心O).(1)請(qǐng)利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長(zhǎng).-參考答案-一、單選題1、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、B【解析】【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)解答.【詳解】解:∵P(2,-n)與點(diǎn)Q(-m,-3)關(guān)于原點(diǎn)對(duì)稱,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故選:B.【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律.3、B【詳解】解:.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;.既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)符合題意;.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形和軸對(duì)稱圖形的概念,解題的關(guān)鍵是判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合;判斷中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.4、A【分析】取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時(shí)最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對(duì)稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時(shí),MG最短,即HN最短,此時(shí)∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).5、C【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.二、多選題1、ABD【解析】【分析】根據(jù)圓周角定理,等邊對(duì)等角,等腰三角形的性質(zhì),直徑所對(duì)圓周角是直角等知識(shí)即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點(diǎn)D是的中點(diǎn),即,故選項(xiàng)正確;由選項(xiàng)可知是的平分線,∴,由圓周角定理知,,故選項(xiàng)正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項(xiàng)錯(cuò)誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項(xiàng)正確.綜上所述,正確的結(jié)論是:.故選:【考點(diǎn)】本題考查了圓周角定理,等邊對(duì)等角,等腰直角三角形的判定和性質(zhì),直徑所對(duì)圓周角是直角等知識(shí),解題關(guān)鍵是求出相應(yīng)角的度數(shù)2、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對(duì)四個(gè)選項(xiàng)進(jìn)行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,∴ABCD都是正確的.故選:ABCD.【考點(diǎn)】本題考查了三角形的外心和勾股定理的應(yīng)用,熟練掌握三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等是解決本題的關(guān)鍵.3、BD【解析】【分析】直接利用方程根與系數(shù)的關(guān)系以及根的判別式分析求出即可.【詳解】解:當(dāng)a=0時(shí),方程整理為解得,∴選項(xiàng)B正確;故選項(xiàng)A錯(cuò)誤;當(dāng)時(shí),方程是一元二次方程,∴∴此時(shí)的方程表兩個(gè)不相等的實(shí)數(shù)根,故選項(xiàng)C錯(cuò)誤;若時(shí),,∴當(dāng)時(shí),方程有兩個(gè)負(fù)實(shí)數(shù)根∴選項(xiàng)D正確,故選:BD【考點(diǎn)】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系,正確把握相關(guān)知識(shí)是解題關(guān)鍵.4、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號(hào)就可以了.【詳解】解:、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程無(wú)實(shí)數(shù)根,錯(cuò)誤,符合題意;、△,方程有實(shí)數(shù)根,正確,不符合題意;故選:ABC.【考點(diǎn)】本題考查了一元二次方程根的情況與判別式△的關(guān)系:解題的關(guān)鍵是掌握(1)△方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△方程有兩個(gè)相等的實(shí)數(shù)根;(3)△方程沒(méi)有實(shí)數(shù)根.5、ABD【解析】【分析】根據(jù)圓的相關(guān)知識(shí)和垂徑定理進(jìn)行分析即可.【詳解】解:A.圓是軸對(duì)稱圖形,它有無(wú)數(shù)條對(duì)稱軸,正確;B.圓的半徑、弦長(zhǎng)的一半、弦上的弦心距能組成一個(gè)直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長(zhǎng)相等,則弦所對(duì)的弦心距也相等,不正確,只有在同圓或等圓中,弦長(zhǎng)相等,則弦所對(duì)的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧,正確.故選:ABD.【考點(diǎn)】本題考查了學(xué)生對(duì)圓的基本概念和垂徑定理的理解,屬于基礎(chǔ)題.三、填空題1、20【解析】【分析】設(shè)該地區(qū)人均收入增長(zhǎng)率為x,根據(jù)2017年人均收入300美元,預(yù)計(jì)2019年人均收入將達(dá)到432美元,可列方程求解.【詳解】解:設(shè)該地區(qū)人均收入增長(zhǎng)率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長(zhǎng)率為20%.故本題答案應(yīng)為:20%.【考點(diǎn)】一元二次方程在實(shí)際生活中的應(yīng)用是本題的考點(diǎn),根據(jù)題意列出方程是解題的關(guān)鍵.2、【解析】【分析】由題意拋物線過(guò)點(diǎn)(40,0),頂點(diǎn)坐標(biāo)為(20,10),設(shè)拋物線的解析式為,從而求出a的值,然后確定拋物線的解析式.【詳解】解:依題意得此函數(shù)解析式頂點(diǎn)為,∴設(shè)解析式為,又函數(shù)圖象經(jīng)過(guò),,,.故答案為.【考點(diǎn)】本題主要考查用待定系數(shù)法確定二次函數(shù)的解析式,解題時(shí)應(yīng)根據(jù)情況設(shè)拋物線的解析式從而使解題簡(jiǎn)單,此題設(shè)為頂點(diǎn)式比較簡(jiǎn)單.3、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計(jì)算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進(jìn)行計(jì)算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點(diǎn)】本題考查了扇形面積的計(jì)算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.4、在⊙A上【分析】先根據(jù)兩點(diǎn)間的距離公式計(jì)算出OA,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法判斷點(diǎn)O與⊙A的位置關(guān)系.【詳解】解:∵點(diǎn)A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點(diǎn)O在⊙A上.故答案為:在⊙A上.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,當(dāng)點(diǎn)P在圓外?d>r;當(dāng)點(diǎn)P在圓上?d=r;當(dāng)點(diǎn)P在圓內(nèi)?d<r.5、【分析】直接利用概率公式進(jìn)行計(jì)算即可.【詳解】解:過(guò)年時(shí)包了100個(gè)餃子,有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是故答案為:【點(diǎn)睛】本題考查的是簡(jiǎn)單隨機(jī)事件的概率,熟練的利用概率公式進(jìn)行計(jì)算是解本題的關(guān)鍵;概率的含義:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.四、簡(jiǎn)答題1、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長(zhǎng)為.【考點(diǎn)】本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問(wèn)題.2、(1)見(jiàn)解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問(wèn)題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過(guò)O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點(diǎn)】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.五、解答題1、(1),;(2)平方步【分析】(1)利用配方法,即

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論