2024年吉林省磐石市中考數學題庫含答案詳解(突破訓練)_第1頁
2024年吉林省磐石市中考數學題庫含答案詳解(突破訓練)_第2頁
2024年吉林省磐石市中考數學題庫含答案詳解(突破訓練)_第3頁
2024年吉林省磐石市中考數學題庫含答案詳解(突破訓練)_第4頁
2024年吉林省磐石市中考數學題庫含答案詳解(突破訓練)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省磐石市中考數學題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、關于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數根 B.有兩個相等的實數根C.無實數根 D.無法確定2、如圖,點O是△ABC的內心,若∠A=70°,則∠BOC的度數是()A.120° B.125° C.130° D.135°3、圖2是由圖1經過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉 D.以上三種都不對4、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米5、在一個不透明的口袋中,裝有若干個除顏色不同其余都相同的球,如果口袋中裝有4個黑球且摸到黑球的概率為,那么口袋中球的總數為()A.12個 B.9個 C.6個 D.3個二、多選題(5小題,每小題3分,共計15分)1、下列四個命題中正確的是(

)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線2、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(

)A.① B.② C.③ D.④3、二次函數(a,b,c是常數,)的自變量x與函數值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數)4、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數根C.當時,方程有兩個相等的實數根 D.當時,方程有兩個不相等的實數根5、如圖,AB是的直徑,C是上一點,E是△ABC的內心,,延長BE交于點F,連接CF,AF.則下列結論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據題意,可列方程為_______.2、在平面直角坐標系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關于原點對稱,那么點A的坐標是____________.3、有五張正面分別標有數字,,0,1,2的不透明卡片,它們除數字不同外其余全部相同.現將它們背面朝上,洗勻后從中任取一張,將該卡片上的數字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數字記為,則為非負數的概率為________.4、若拋物線的圖像與軸有交點,那么的取值范圍是________.5、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉90°后得到△AB′C′.則圖中陰影部分的面積為_____.四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數解析式;(2)若在點C的右側有一平行于y軸的直線,分別交一次函數圖象與反比例函數圖象于D、E兩點,若CD=CE,求點D坐標.2、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?五、解答題(4小題,每小題10分,共計40分)1、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當直線l在如圖①的位置時①請直接寫出與之間的數量關系______.②請直接寫出線段BH,EH,CH之間的數量關系______.(2)當直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數量關系并證明;(3)已知,在直線l旋轉過程中當時,請直接寫出EH的長.2、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).3、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當的長度為多少時,為等腰三角形?4、某商場經營某種品牌的玩具,購進的單價是30元,根據市場調查,在一段時間內,銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設該種品牌玩具的銷售單價為x元,請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務,求商場銷售該品牌玩具獲利的最大利潤是多少元?-參考答案-一、單選題1、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據非負數的性質得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數根;②當△=0時,方程有兩個相等的實數根;③當△<0時,方程無實數根.上面的結論反過來也成立.2、B【解析】【分析】利用內心的性質得∠OBC=∠ABC,∠OCB=∠ACB,再根據三角形內角和計算出∠OBC+∠OCB=55°,然后再利用三角形內角和計算∠BOC的度數.【詳解】解:∵O是△ABC的內心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內切圓與內心:三角形的內心到三角形三邊的距離相等;三角形的內心與三角形頂點的連線平分這個內角.3、C【詳解】解:根據圖形可知,這種圖形的運動是旋轉而得到的,故選:C.【點睛】本題考查了圖形的旋轉,熟記圖形的旋轉的定義(把一個平面圖形繞平面內某一點轉動一個角度,叫做圖形的旋轉)是解題關鍵.4、B【解析】【分析】根據題意,可以畫出相應的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設點A(b,0),則設頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數的應用,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.5、A【解析】【詳解】解:∵口袋中裝有4個黑球且摸到黑球的概率為,∴口袋中球的總數為:4÷=12(個).故選A.二、多選題1、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應經過此半徑的外端,故該選項不符合題意;C中,根據切線的判定方法,故該選項符合題意;D中,根據切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關鍵.2、CD【解析】【分析】根據表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據此可判斷①②③,根據與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數的圖象和性質.解題的關鍵在于根據表格獲取正確的信息.3、BC【解析】【分析】由表中數據,結合二次函數的對稱性,可知,二次函數的對稱軸為,結合拋物線對稱軸為:,得出,由,,結合二次函數圖象性質,逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數據可知,當時,,將點代入中,可得.由表格數據可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數對稱軸為,∴和時,對應的函數值相等,∵時,對應函數值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數據可知,二次函數過點和,將點和分別代入二次函數解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數,故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數的圖象性質,二次函數與一元二次方程的關系,深入理解函數概念,熟練掌握二次函數圖象性質是解題的關鍵.4、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數根,故此選項正確,不符合題意;D當時,根據A選項,若k=0,此時方程有一個實數根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.5、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內心性質,等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關鍵.三、填空題1、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據矩形的面積公式,列出關于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關鍵將四個矩形用恰當的方式拼成大矩形列出等量關系.2、【解析】【分析】先按題目要求對A、B點進行平移,再根據原點對稱的特征:橫縱坐標互為相反數進行列方程,求解.【詳解】設,向右平移4個單位,再向下平移6個單位得到∵A、B關于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質,掌握這些是解題關鍵.3、【分析】求出為負數的事件個數,進而得出為非負數的事件個數,然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數字乘積為負數的事件為等8種可能的事件∴為非負數共有種∴為非負數的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關鍵在于求出事件的個數.4、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數根∴∴.故答案是:【考點】本題考查了二次函數與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.5、【分析】利用勾股定理求出AC及AB的長,根據陰影面積等于求出答案.【詳解】解:由旋轉得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質、扇形面積計算公式及分析出陰影面積的構成特點是解題的關鍵.四、簡答題1、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標代入y=中求出k得到反比例函數解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標.【詳解】解:(1)作CM⊥y軸于M,如圖,當x=0時,y=x+2=2,則A(0,2),當y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數與一次函數的綜合題,涉及到待定系數法求函數解析式、平行線分線段成比例定理、等腰三角形的性質,有一定的難度2、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.五、解答題1、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據BC=EC,得出∠ECG=∠BCG=,根據∠ECH=∠HCD=,可得CG=HG,根據勾股定理在Rt△GHC中,,根據GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據,分兩種情況,當∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據勾股定理HE=,當∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據30°直角三角形先證得出CF=,根據勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點睛】本題考查正方形性質,圖形旋轉性質,勾股定理,等邊三角形,等腰直角三角形性質,角平分線,線段和差,掌握正方形性質,圖形旋轉性質,勾股定理,等邊三角形,等腰直角三角形性質,角平分線,線段和差是解題關鍵.2、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據公式法,可得方程的解;(2)根據配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∴Δ=b2﹣4ac=(-5)2-4×2×1=17,∴x=,∴x1=,x2=.(2)解:移項得,并配方,得,即(x-4)2=15,兩邊開平方,得x=4±,∴x1=4+,x2=4-.【考點】本題考查了解一元二次方程,配方法解一元二次方程的關鍵是配方,利用公式法解方程要利用根的判別式.3、(1)見詳解;(2)①見詳解;②當的長度為2或時,為等腰三角形【解析】【分析】(1)由旋轉的性質得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進而即可得到結論;(2)①由,得AH=AG,再證明,進而即可得到結論;②為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,(b)當∠GAQ=∠GQA=67.5°時,(c)當∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論