版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學上冊《圓》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m2、下列多邊形中,內(nèi)角和最大的是(
)A. B. C. D.3、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(
)A. B. C. D.4、下列4個說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對稱軸;④弧是半圓;正確的有(
)A.1個 B.2個 C.3個 D.4個5、如圖,、為的切線,、為切點,點為弧上一點,過點作的切線分別交、于、,若,則的周長等于(
).A. B. C. D.6、如圖,矩形中,,,,分別是,邊上的動點,,以為直徑的與交于點,.則的最大值為(
).A.48 B.45 C.42 D.407、如圖,AB是⊙O的直徑,點E是AB上一點,過點E作CD⊥AB,交⊙O于點C,D,以下結(jié)論正確的是()A.若⊙O的半徑是2,點E是OB的中點,則CD=B.若CD=,則⊙O的半徑是1C.若∠CAB=30°,則四邊形OCBD是菱形D.若四邊形OCBD是平行四邊形,則∠CAB=60°8、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(
)A.1 B.2 C.3 D.49、已知平面內(nèi)有和點,,若半徑為,線段,,則直線與的位置關(guān)系為(
)A.相離 B.相交 C.相切 D.相交或相切10、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.2、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.3、如圖,PA、PB切⊙O于A、B兩點,點C在⊙O上,且∠P=∠C,則∠AOB=_______.4、如圖,在一邊長為的正六邊形中,分別以點A,D為圓心,長為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)5、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.6、如圖,在中,半徑,是半徑上一點,且.,是上的兩個動點,,是的中點,則的長的最大值等于__________.7、如圖,拋物線的圖象與坐標軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當沿半圓從點運動至點時,點運動的路徑長是__________.8、如圖,⊙O的直徑AB=4,P為⊙O上的動點,連結(jié)AP,Q為AP的中點,若點P在圓上運動一周,則點Q經(jīng)過的路徑長是______.9、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.10、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.三、解答題(5小題,每小題6分,共計30分)1、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).2、在下列正多邊形中,是中心,定義:為相應正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點逆時針旋轉(zhuǎn)角度得.(1)若線段與線段相交點,則:圖1中的取值范圍是________;圖3中的取值范圍是________;(2)在圖1中,求證(3)在圖2中,正方形邊長為4,,邊上的一點旋轉(zhuǎn)后的對應點為,若有最小值時,求出該最小值及此時的長度;(4)如圖3,當時,直接寫出的值.3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構(gòu)成什么圖形,請說明理由.4、如圖所示,四邊形ABCD的頂點在同一個圓上,另一個圓的圓心在AB邊上,且該圓與四邊形ABCD的其余三條邊相切.求證:.5、如圖,是的直徑,點是上一點,點是延長線上一點,,是的弦,.(1)求證:直線是的切線;(2)若,求的半徑;(3)若于點,點為上一點,連接,,,請找出,,之間的關(guān)系,并證明.-參考答案-一、單選題1、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進行排除選項.【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.3、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.4、B【解析】【分析】根據(jù)弧的分類、圓的性質(zhì)逐一判斷即可.【詳解】解:①直徑是最長的弦,故正確;②最長的弦才是直徑,故錯誤;③過圓心的任一直線都是圓的對稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯誤,正確的有兩個,故選B.【考點】本題考查了對圓的認識,熟知弦的定義、弧的分類是本題的關(guān)鍵.5、B【解析】【分析】由切線長定理可得,然后根據(jù)線段之間的轉(zhuǎn)化即可求得的周長.【詳解】∵、為的切線,所以,又∵為的切線,∴,∴的周長.故選:B.【考點】此題考查了圓中切線長定理的運用,解題的關(guān)鍵是熟練掌握切線長定理.6、A【解析】【分析】過A點作AH⊥BD于H,連接OM,如圖,先利用勾股定理計算出BD=75,則利用面積法可計算出AH=36,再證明點O在AH上時,OH最短,此時HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點O在AH上時,OH最短,∵HM=,∴此時HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了矩形的性質(zhì)和勾股定理.7、C【解析】【分析】根據(jù)垂徑定理,解直角三角形知識,一一求解判斷即可.【詳解】解:A、∵OC=OB=2,∵點E是OB的中點,∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本選項錯誤不符合題意;B、根據(jù),缺少條件,無法得出半徑是1,本選項錯誤,不符合題意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四邊形OCBD是菱形;故本選項正確本選項符合題意.D、∵四邊形OCBD是平行四邊形,OC=OD,所以四邊形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本選項錯誤不符合題意..故選:C.【考點】本題考查了圓周角定理,垂徑定理,菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的理解題意是解題的關(guān)鍵.8、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.9、D【解析】【分析】根據(jù)點與圓的位置關(guān)系的判定方法進行判斷.【詳解】解:∵⊙O的半徑為2cm,線段OA=3cm,線段OB=2cm,即點A到圓心O的距離大于圓的半徑,點B到圓心O的距離等于圓的半徑,∴點A在⊙O外.點B在⊙O上,∴直線AB與⊙O的位置關(guān)系為相交或相切,故選:D.【考點】本題考查了直線與圓的位置關(guān)系,正確的理解題意是解題的關(guān)鍵.10、A【解析】【分析】設扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點】本題主要考查扇形弧長公式.二、填空題1、
【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.2、8.【解析】【分析】連結(jié)OA,OB,點是的中點,半徑交弦于點,根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關(guān)鍵.3、120°【解析】【分析】根據(jù)圓周角定理得到∠C=∠AOB,根據(jù)切線的性質(zhì)得到∠PAO=∠PBO=90°,進而得出∠P+∠AOB=180°,根據(jù)題意計算,得到答案.【詳解】解:由圓周角定理得:∠C=∠AOB,∵PA、PB切⊙O于A、B兩點,∴∠PAO=∠PBO=90°,∴∠P+∠AOB=180°,∵∠P=∠C,∴∠AOB+∠AOB=180°,∴∠AOB=120°,故答案為:120°.【考點】本題考查切線的性質(zhì)以及圓周角定理,熟記由切線得垂直是解題的關(guān)鍵.4、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個內(nèi)角公式可得該正六邊形的每一個內(nèi)角;∵,;則陰影部分面積為:.【考點】本題考查了正多邊形和圓、扇形面積計算等知識;掌握正多邊形內(nèi)角的計算公式和扇形面積公式是解題的關(guān)鍵.5、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.6、【解析】【分析】當點F與點D運動至共線時,OF長度最大,此時F是AB的中點,則OF⊥AB,設OF為x,則DF=x﹣4,在Rt△BOF中,利用勾股定理進行求解即可.【詳解】∵當點F與點D運動至共線時,OF長度最大,如圖所示,∵F是AB的中點,∴OC⊥AB,設OF為x,則DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴,解得,或(舍去),∴OF的長的最大值等于,故答案為:.【考點】本題考查了垂徑定理,直角三角形斜邊中線的性質(zhì),勾股定理等知識,確定點F與點D運動至共線時,OF長度最大是解題的關(guān)鍵.7、【解析】【分析】先求出A、B、E的坐標,然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.8、【解析】【分析】連接OQ,以OA為直徑作⊙C,確定出點Q的運動路徑即可求得路徑長.【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點Q在以OA為直徑的⊙C上.∴當點P在⊙O上運動一周時,點Q在⊙C上運動一周.∵AB=4,∴OA=2.∴⊙C的周長為.∴點Q經(jīng)過的路徑長為.故答案為:【考點】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長的計算等知識點,熟知相關(guān)定理及其推論是解題的基礎(chǔ),確定點Q的運動路徑是解題的關(guān)鍵.9、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點】本題考查了圓周角定理及其推論:同弧所對的圓周角相等;半圓(?。┖椭睆剿鶎Φ膱A周角是直角,正確添加輔助線是解題的關(guān)鍵.10、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.三、解答題1、【解析】【分析】根據(jù)弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關(guān)鍵.2、(1),;(2)見解析;(3)最小值:,此時=2+;(4)【解析】【分析】(1)根據(jù)正多邊形的中心角的定義即可解決問題;(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.利用全等三角形的性質(zhì)分別證明:BE=,即可解決問題;(3)如圖2中,作點O關(guān)于BC的對稱點E,連接OE交BC于K,連接交BC于點,連接,此時的值最小,即有最小值.(4)利用等腰三角形三線合一的性質(zhì)即可解決問題;【詳解】(1)由題意圖1中,∵△ABC是等邊三角形,O是中心,∴∠AOB=120°∴∠α的取值范圍是:0°<α≤120°,圖3中,∵ABCDEF…是正n邊形,O是中心,∴∠BOC=,∴∠α的取值范圍是:0°<α≤,故答案為:0°<α≤120°,0°<α≤.(2)如圖1中,作OE⊥BC于E,OF⊥于F,連接.∵∠OEB=∠OF=90°,根據(jù)題意,O是中心,∴OB=OC,∴∠OBE=∠,∴△OBE≌△OF(AAS),∴OE=OF,BE=F∵,∴Rt△≌Rt△(HL),∴,∴.(3)如圖2中,作點O關(guān)于BC的對稱點E,連接OE交BC于K,連接交BC于點,連接,此時的值最?。摺希?35°,∠BOC=90°,∴∠OCB=∠=45°,∴∥BC,∵OK⊥BC,OB=OC,∴BK=CK=2,OB=2,∵∥,OK=KE,∴,∴==,∴=2+,在Rt△中,=.∵,∴有最小值,最小值為,此時=2+.(4)如圖3中,∵ABCDEF…是正n邊形,O是中心,∴∠BOC=,∵OC⊥,,∴∠=∠=∠BOC=,∴α=.【考點】本題屬于多邊形綜合題,考查了正多邊形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.3、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床打呼嚕改善藥物藥物特征及注意事項
- 2025年大學急救護理技術(shù)(技能實訓)試題及答案
- 2025年高職中醫(yī)康復技術(shù)(針灸技術(shù))試題及答案
- 2025年中職烘焙技術(shù)應用管理(管理技術(shù))試題及答案
- 2025年高職物業(yè)管理(安全管理)試題及答案
- 2025年大學第一學年(經(jīng)濟學)經(jīng)濟學專業(yè)基礎(chǔ)綜合測試試題及答案
- 中職第一學年(畜牧獸醫(yī))畜禽養(yǎng)殖技術(shù)2026年階段測試題及答案
- 2025年高職??疲ㄡ樉耐颇茫┽樉耐颇弥委熅C合測試題及答案
- 高三生物(綜合應用)2025-2026年下學期期末測試卷
- 2025年大學生物技術(shù)(發(fā)酵工程技術(shù))試題及答案
- 麻醉科術(shù)前評估指南
- 2025至2030中國高拍儀行業(yè)項目調(diào)研及市場前景預測評估報告
- 2025上海松江國有資產(chǎn)投資經(jīng)營管理集團有限公司下屬公司招聘4人筆試考試參考題庫及答案解析
- 超大面積燙傷后的護理
- 2025年高考廣東卷物理真題(原卷版)
- 2025中國繼續(xù)教育行業(yè)市場發(fā)展現(xiàn)狀與投資策略報告
- 四川綿陽燃氣集團有限公司興綿燃氣有限責任公司招聘筆試題庫2025
- 幼兒心理健康教育個案輔導記錄表
- (21)普通高中西班牙語課程標準日常修訂版(2017年版2025年修訂)
- 2026年土壤調(diào)理劑市場分析現(xiàn)狀
- 2025年4月自考習概部分試題及答案
評論
0/150
提交評論