強(qiáng)化訓(xùn)練-人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(解析版)_第1頁
強(qiáng)化訓(xùn)練-人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(解析版)_第2頁
強(qiáng)化訓(xùn)練-人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(解析版)_第3頁
強(qiáng)化訓(xùn)練-人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(解析版)_第4頁
強(qiáng)化訓(xùn)練-人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評試題(解析版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》專項(xiàng)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點(diǎn).下列四個角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD2、如圖,已知中,,,,如果以點(diǎn)為圓心的圓與斜邊有公共點(diǎn),那么⊙的半徑的取值范圍是(

)A. B. C. D.3、如圖,PA,PB是⊙O的切線,A,B是切點(diǎn),點(diǎn)C為⊙O上一點(diǎn),若∠ACB=70°,則∠P的度數(shù)為(

)A.70° B.50° C.20° D.40°4、下列說法:(1)長度相等的弧是等弧;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(

)A.1個 B.2個 C.3個 D.4個5、一個商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點(diǎn)為圓心,為半徑作圓與的延長線相交于點(diǎn),則商標(biāo)圖案的面積是(

)A. B.C. D.6、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個角平分線的交點(diǎn).A.1 B.2 C.3 D.47、如圖,在中,,AB=AC=5,點(diǎn)在上,且,點(diǎn)E是AB上的動點(diǎn),連結(jié),點(diǎn),G分別是BC,DE的中點(diǎn),連接,,當(dāng)AG=FG時,線段長為(

)A. B. C. D.48、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點(diǎn)E,下列判斷正確的是(

A.AG平分CDB.C.點(diǎn)E是△ABC的內(nèi)心D.點(diǎn)E到點(diǎn)A,B,C的距離相等9、已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.1610、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.2、已知圓錐的底面半徑為,側(cè)面展開圖的圓心角是180°,則圓錐的高是______.3、圓錐的底面半徑為3,側(cè)面積為,則這個圓錐的母線長為________.4、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.5、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動至點(diǎn)時,點(diǎn)運(yùn)動的路徑長是__________.6、如圖,在中,點(diǎn)是的中點(diǎn),連接交弦于點(diǎn),若,,則的長是______.7、如圖,已知的半徑為2,內(nèi)接于,,則__________.8、如圖,在中,,,,將繞順時針旋轉(zhuǎn)后得,將線段繞點(diǎn)逆時針旋轉(zhuǎn)后得線段,分別以,為圓心,、長為半徑畫弧和弧,連接,則圖中陰影部分面積是________.9、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_____.10、在⊙O中,若弦垂直平分半徑,則弦所對的圓周角等于_________°.三、解答題(5小題,每小題6分,共計(jì)30分)1、在中,,,,已知⊙O經(jīng)過點(diǎn)C,且與相切于點(diǎn)D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)若點(diǎn)D是邊上的動點(diǎn),設(shè)⊙O與邊、分別相交于點(diǎn)E、F,求的最小值.2、如圖,AB、CD是⊙O中兩條互相垂直的弦,垂足為點(diǎn)E,且AE=CE,點(diǎn)F是BC的中點(diǎn),延長FE交AD于點(diǎn)G,已知AE=1,BE=3,OE=.(1)求證:△AED≌△CEB;(2)求證:FG⊥AD;(3)若一條直線l到圓心O的距離d=,試判斷直線l是否是圓O的切線,并說明理由.3、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.4、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.5、如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,求線段AE的長.-參考答案-一、單選題1、D【解析】【分析】由圓周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【詳解】解:連接BC,如圖所示:∵AB是⊙O的直徑,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故選:D.【考點(diǎn)】此題考查了圓周角定理:同弧所對的圓周角相等,直徑所對的圓周角是直角,正確掌握圓周角定理是解題的關(guān)鍵.2、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計(jì)算出AB=13,再利用面積法計(jì)算出然后根據(jù)直線與圓的位置關(guān)系得到當(dāng)時,以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn).【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn)時,r的取值范圍為故選:C【考點(diǎn)】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.3、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質(zhì),即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點(diǎn)】此題考查了切線的性質(zhì)與圓周角定理,注意掌握輔助線的作法和數(shù)形結(jié)合思想的應(yīng)用.4、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項(xiàng).【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點(diǎn)】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識是解答本題的關(guān)鍵,難度不大.5、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點(diǎn)】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.6、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點(diǎn),是解題的關(guān)鍵.7、A【解析】【分析】連接DF,EF,過點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點(diǎn)G是DE的中點(diǎn),∴AG=DG=EG又∵AG=FG∴點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點(diǎn)是BC的中點(diǎn),∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點(diǎn)】本題考查直徑所對的圓周角是90°,四點(diǎn)共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計(jì)算是解題關(guān)鍵.8、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點(diǎn)為△ABC的內(nèi)心故答案為:C.【考點(diǎn)】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.9、B【解析】【分析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】解:∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選:B.【考點(diǎn)】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識點(diǎn),能求出CE=DE是解此題的關(guān)鍵.二、填空題1、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.2、【解析】【分析】設(shè)圓錐的母線長為Rcm,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可得母線長,然后利用勾股定理求得圓錐的高即可.【詳解】解:設(shè)圓錐的母線長為Rcm,根據(jù)題意得2π?5=,解得R=10.即圓錐的母線長為10cm,∴圓錐的高為:(cm).故答案為:.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.3、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點(diǎn)】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.4、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點(diǎn)為E,∵PA、PB分別是⊙O的切線,且切點(diǎn)為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.5、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動的路徑長是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問題,考查了運(yùn)動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.6、8.【解析】【分析】連結(jié)OA,OB,點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點(diǎn)】本題考查垂徑定理的推論,勾股定理,線段中點(diǎn)定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點(diǎn)定義是解題關(guān)鍵.7、【解析】【詳解】分析:根據(jù)圓內(nèi)接四邊形對邊互補(bǔ)和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為2.點(diǎn)睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.8、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.9、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點(diǎn)C到AB的距離CH,即可求出圓C上點(diǎn)到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),∴當(dāng)y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點(diǎn)】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關(guān)鍵是求出圓上的點(diǎn)到直線AB的最大距離.10、120°或60°【解析】【分析】根據(jù)弦垂直平分半徑及OB=OC證明四邊形OBAC是矩形,再根據(jù)OB=OA,OE=求出∠BOE=60°,即可求出答案.【詳解】設(shè)弦垂直平分半徑于點(diǎn)E,連接OB、OC、AB、AC,且在優(yōu)弧BC上取點(diǎn)F,連接BF、CF,∴OB=AB,OC=AC,∵OB=OC,∴四邊形OBAC是菱形,∴∠BOC=2∠BOE,∵OB=OA,OE=,∴cos∠BOE=,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=∠BOC=60°,∴弦所對的圓周角為120°或60°,故答案為:120°或60°.【考點(diǎn)】此題考查圓的基本知識點(diǎn):圓的垂徑定理,同圓的半徑相等的性質(zhì),圓周角定理,菱形的判定定理及性質(zhì)定理,銳角三角函數(shù),熟練掌握圓的各性質(zhì)定理是解題的關(guān)鍵.三、解答題1、(1)見詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點(diǎn)O,然后以O(shè)為圓心,為半徑主要作圓即為所作圓.(2)過點(diǎn)C作,根據(jù)點(diǎn)到直線的距離,垂線段最短可知,點(diǎn)CD為圓的直徑時,此時圓的直徑最短,根據(jù)面積法可得出因?yàn)镋F也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點(diǎn)D,當(dāng)CD為過的圓心點(diǎn)O時,此時圓的直徑最短∴EF為的直徑,∴此時EF的長為故EF的最小值為:【考點(diǎn)】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識點(diǎn)的應(yīng)用,熟練掌握點(diǎn)到直線的距離垂線段最短這性質(zhì)定理是解此題的關(guān)鍵.2、(1)見解析;(2)見解析;(3)直線l是圓O的切線,理由見解析【解析】【分析】(1)由圓周角定理得∠A=∠C,由ASA得出△AED≌△CEB;(2)由直角三角形斜邊上的中線性質(zhì)得EF=BC=BF,由等腰三角形的性質(zhì)得∠FEB=∠B,由圓周角定理和對頂角相等證出∠A+∠AEG=90°,進(jìn)而得出結(jié)論;(3)作OH⊥AB于H,連接OB,由垂徑定理得出AH=BH=AB=2,則EH=AH?AE=1,由勾股定理求出OH=1,OB=,由一條直線l到圓心O的距離d=等于⊙O的半徑,即可得出結(jié)論.【詳解】(1)證明:由圓周角定理得:∠A=∠C,在△AED和△CEB中,,∴△AED≌△CEB(ASA);(2)證明:∵AB⊥CD,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵點(diǎn)F是BC的中點(diǎn),∴EF=BC=BF,∴∠FEB=∠B,∵∠A=∠C,∠AEG=∠FEB=∠B,∴∠A+∠AEG=∠C+∠B=90°,∴∠AGE=90°,∴FG⊥AD;(3)解:直線l是圓O的切線,理由如下:作OH⊥AB于H,連接OB,如圖所示:∵AE=1,BE=3,∴AB=AE+BE=4,∵OH⊥AB,∴AH=BH=AB=2,∴EH=AH﹣AE=1,∴OH===1,∴OB===,即⊙O的半徑為,∵一條直線l到圓心O的距離d==⊙O的半徑,∴直線l是圓O的切線.【考點(diǎn)】本題是圓的綜合題目,考查了圓周角定理、垂徑定理、切線的判定、全等三角形的判定、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)、勾股定理等知識;本題綜合性強(qiáng),熟練掌握圓周角定理和垂徑定理是解題的關(guān)鍵.3、(1)見解析;(2)AD=.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論