版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省凌源市中考數(shù)學(xué)題庫(kù)試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.2、若關(guān)于x的一元二次方程x2﹣ax=0的一個(gè)解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.23、一元二次方程配方后可化為(
)A. B.C. D.4、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的5、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.0二、多選題(5小題,每小題3分,共計(jì)15分)1、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(
)A.B.當(dāng)時(shí),y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是2、如圖,拋物線過點(diǎn),對(duì)稱軸是直線.下列結(jié)論正確的是(
)A.B.C.若關(guān)于x的方程有實(shí)數(shù)根,則D.若和是拋物線上的兩點(diǎn),則當(dāng)時(shí),3、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當(dāng)x<1時(shí),y隨x的增大而減小B.若圖象與x軸有交點(diǎn),則a≥-4C.當(dāng)a=3時(shí),不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后過點(diǎn)(1,-2),則a=-34、下列方程中,是一元二次方程的是(
)A. B. C. D.5、已知A、B兩點(diǎn)的坐標(biāo)分別是(-2,3)和(2,3),則下面四個(gè)結(jié)論正確的有(
)A.A、B關(guān)于x軸對(duì)稱; B.A、B關(guān)于y軸對(duì)稱;C.A、B關(guān)于原點(diǎn)對(duì)稱; D.若A、B之間的距離為4第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.2、如圖,PA,PB是的切線,切點(diǎn)分別為A,B.若,,則AB的長(zhǎng)為______.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點(diǎn)與圓心重疊,則弦的長(zhǎng)度為________.4、如圖,點(diǎn)A,B,C在⊙O上,四邊形OABC是平行四邊形,若對(duì)角線AC=2,則的長(zhǎng)為_____.5、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng).若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動(dòng)點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng).P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時(shí),PQ與⊙O相切?五、解答題(4小題,每小題10分,共計(jì)40分)1、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個(gè)任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡(jiǎn)易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長(zhǎng)度與半圓的半徑相等;與垂直于點(diǎn),足夠長(zhǎng).使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對(duì)其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請(qǐng)補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請(qǐng)完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長(zhǎng)度.2、已知關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,求的值.3、如圖,在平面直角坐標(biāo)系中,△ABC的BC邊與x軸重合,頂點(diǎn)A在y軸的正半軸上,線段OB,OC()的長(zhǎng)是關(guān)于x的方程的兩個(gè)根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,設(shè)△CPQ的面積為S(),點(diǎn)P的橫坐標(biāo)為a,求S與a的函數(shù)關(guān)系式;(3)點(diǎn)M的坐標(biāo)為,當(dāng)△MAB為直角三角形時(shí),直接寫出m的值.4、如圖,AB是的直徑,CD是的一條弦,且于點(diǎn)E.(1)求證:;(2)若,,求的半徑.-參考答案-一、單選題1、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點(diǎn)睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點(diǎn)】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.3、B【解析】【分析】根據(jù)題意直接對(duì)一元二次方程配方,然后把常數(shù)項(xiàng)移到等號(hào)右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點(diǎn)】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項(xiàng)移到等號(hào)的右邊;把二次項(xiàng)的系數(shù)化為1;等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).4、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.5、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.二、多選題1、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯(cuò)誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯(cuò)誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開口向上,,故①正確;時(shí),隨的增大而增大,故②錯(cuò)誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對(duì)稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.2、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對(duì)稱軸在y軸左側(cè),∴a、b同號(hào),∴b<0,∵拋物線與y軸交點(diǎn)在正半軸上,∴c>0,∴abc>0,故此選項(xiàng)不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點(diǎn),對(duì)稱軸是直線,∴拋物線與x軸另一交點(diǎn)為(2,0),∴當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項(xiàng)不符合題意;C.∵-=-1,∴b=2a,∵當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關(guān)于x的方程有實(shí)數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項(xiàng)不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(diǎn)(x1,y1)到對(duì)稱軸的距離大于點(diǎn)(x2,y2)到對(duì)稱軸的距離,∴y1<y2,故此選項(xiàng)符合題意;故選:D.【考點(diǎn)】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.3、ACD【解析】【分析】A、此函數(shù)在對(duì)稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點(diǎn),就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對(duì)稱軸:直線x=2,A、當(dāng)x<1時(shí),y隨x的增大而減小,故該選項(xiàng)正確;B、當(dāng)Δ=b2?4ac=16?4a≥0,即a≤4時(shí),二次函數(shù)和x軸有交點(diǎn),該選項(xiàng)錯(cuò)誤;C、當(dāng)a=3時(shí),則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項(xiàng)正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個(gè)單位,再向左平移3個(gè)單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項(xiàng)正確.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點(diǎn)的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.4、ABC【解析】【分析】根據(jù)一元二次方程的定義逐個(gè)判斷即可.【詳解】解:A、是一元二次方程,故本選項(xiàng)符合題意;B、是一元二次方程,故本選項(xiàng)符合題意;C、是一元二次方程,故本選項(xiàng)符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項(xiàng)不符合題意;故選:【考點(diǎn)】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內(nèi)容是解此題的關(guān)鍵,注意:只含有一個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)最高是2的整式.5、BD【解析】【分析】根據(jù)點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱、軸對(duì)稱的特點(diǎn),求出對(duì)應(yīng)點(diǎn)坐標(biāo)即可.【詳解】點(diǎn)A(-2,3)關(guān)于x軸對(duì)稱的點(diǎn)為(-2,-3),故A錯(cuò)誤點(diǎn)A(-2,3)關(guān)于y軸對(duì)稱的點(diǎn)為(2,3),故B正確點(diǎn)A(-2,3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為(2,-3),故C錯(cuò)誤點(diǎn)A、點(diǎn)B的縱坐標(biāo)相同,故A、B之間的距離為,故D正確故選BD【考點(diǎn)】本題考查了點(diǎn)坐標(biāo)關(guān)于x,y軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱的特點(diǎn),以及兩點(diǎn)間距離公式,熟悉對(duì)應(yīng)知識(shí)點(diǎn)是解決本題的關(guān)鍵.三、填空題1、相切或相交【詳解】首先求出方程的根,再利用半徑長(zhǎng)度,由點(diǎn)O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當(dāng)半徑為2時(shí),直線l與圓O的的位置關(guān)系是相切,當(dāng)半徑為3時(shí),直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點(diǎn)睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.2、3【分析】由切線長(zhǎng)定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點(diǎn)睛】本題考查了等邊三角形的判定和切線長(zhǎng)定理,解題的關(guān)鍵是作出相應(yīng)輔助線.3、【分析】連接OC交AB于點(diǎn)D,再連接OA.根據(jù)軸對(duì)稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長(zhǎng)度,進(jìn)而即可求出AB的長(zhǎng)度.【詳解】解:如下圖所示,連接OC交AB于點(diǎn)D,再連接OA.∵折疊后弧的中點(diǎn)與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點(diǎn)睛】本題考查軸對(duì)稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.4、【分析】連接OB,交AC于點(diǎn)D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長(zhǎng)公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點(diǎn)D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設(shè),則,∴,即,解得:或(舍去),∴的長(zhǎng)為:,故答案為:.【點(diǎn)睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長(zhǎng)公式等,熟練掌握各個(gè)定理和公式是解題關(guān)鍵.5、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計(jì)算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時(shí),,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時(shí),,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.四、簡(jiǎn)答題1、(1)27(2)【解析】【分析】(1)根據(jù)t秒時(shí),M、N兩點(diǎn)的運(yùn)動(dòng)路程,分別表示出AM、BM、BN、CN的長(zhǎng)度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時(shí),由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時(shí),∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時(shí),DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時(shí),DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識(shí),熟練掌握和靈活應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.2、(1)當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時(shí),PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長(zhǎng)定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運(yùn)動(dòng)的時(shí)間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時(shí),PQ與⊙O相切.【考點(diǎn)】本題主要考查了切線長(zhǎng)定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長(zhǎng)定理.五、解答題1、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個(gè)角相等,即可證明結(jié)論;(3)連,延長(zhǎng)與相交于點(diǎn),由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關(guān)系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長(zhǎng)與相交于點(diǎn),由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運(yùn)用這些知識(shí)點(diǎn)是解題關(guān)鍵.2、4【解析】【分析】先根據(jù)一元二次方程根的判別式可得,從而可得,再代入計(jì)算即可得.【詳解】解:∵關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,∴此方程根的判別式,即,則,,,.【考點(diǎn)】本題考查了一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(淡水養(yǎng)殖)魚類飼養(yǎng)實(shí)操測(cè)試試題及答案
- 2026年注冊(cè)稅務(wù)師(稅法一)試題及答案
- 2025年中職軟件工程(軟件需求分析基礎(chǔ))試題及答案
- 2025年大學(xué)大三(金融學(xué))國(guó)際金融試題及答案
- 2025年高職第三學(xué)年(智能控制技術(shù))工業(yè)機(jī)器人控制系統(tǒng)調(diào)試測(cè)試題及答案
- 2025年中職音樂(音樂理論進(jìn)階)試題及答案
- 2025年中職社會(huì)體育指導(dǎo)與管理(社會(huì)體育基礎(chǔ))試題及答案
- 2026年中職第一學(xué)年(學(xué)前教育基礎(chǔ))幼兒心理學(xué)階段測(cè)試題及答案
- 2026年農(nóng)產(chǎn)品質(zhì)量檢測(cè)(農(nóng)產(chǎn)品檢測(cè))考題及答案
- 2026年上海單招動(dòng)物醫(yī)學(xué)專業(yè)基礎(chǔ)題必刷含答案
- GB/T 14748-2025兒童呵護(hù)用品安全兒童推車
- 《粵港澳大灣區(qū)城際鐵路建設(shè)工程資料管理規(guī)范》
- 期末復(fù)習(xí)知識(shí)清單 2024-2025學(xué)年統(tǒng)編版語(yǔ)文六年級(jí)上冊(cè)
- 2025年中國(guó)碳?xì)淝逑磩┦袌?chǎng)調(diào)查研究報(bào)告
- 海水墻面防水施工方案設(shè)計(jì)
- 退化森林修復(fù)技術(shù)-洞察與解讀
- 水箱安裝施工質(zhì)量管理方案
- 2025年國(guó)企人力資源管理崗招聘考試專業(yè)卷(含崗位說明書)解析與答案
- 交通事故處理講解
- 監(jiān)理見證取樣知識(shí)培訓(xùn)課件
- 市政工程地基處理技術(shù)培訓(xùn)
評(píng)論
0/150
提交評(píng)論