難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練試題(解析版)_第1頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練試題(解析版)_第2頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練試題(解析版)_第3頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練試題(解析版)_第4頁
難點(diǎn)解析人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練試題(解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊《圓》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內(nèi)切,則點(diǎn)與圓A的位置關(guān)系是(

)A.點(diǎn)C在圓A外,點(diǎn)D在圓A內(nèi) B.點(diǎn)C在圓A外,點(diǎn)D在圓A外C.點(diǎn)C在圓A上,點(diǎn)D在圓A內(nèi) D.點(diǎn)C在圓A內(nèi),點(diǎn)D在圓A外2、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個動點(diǎn)(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.53、如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°4、如圖,在中,,AB=AC=5,點(diǎn)在上,且,點(diǎn)E是AB上的動點(diǎn),連結(jié),點(diǎn),G分別是BC,DE的中點(diǎn),連接,,當(dāng)AG=FG時,線段長為(

)A. B. C. D.45、若某圓錐的側(cè)面展開圖是一個半圓,已知圓錐的底面半徑為r,那么圓錐的高為(

)A. B. C. D.6、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點(diǎn)E,下列判斷正確的是(

A.AG平分CDB.C.點(diǎn)E是△ABC的內(nèi)心D.點(diǎn)E到點(diǎn)A,B,C的距離相等7、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm8、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能9、如圖,在中,,cm,cm.是邊上的一個動點(diǎn),連接,過點(diǎn)作于,連接,在點(diǎn)變化的過程中,線段的最小值是(

)A.1 B. C.2 D.10、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長,交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)D.若∠A=32°,則∠D=_____度.2、如圖,從一塊半徑為的圓形鐵皮上剪出一個圓周角為120°的扇形,如果將剪下來的扇形圍成一個圓錐,則該圓錐的底面圓的半徑為_________.3、如圖,將三角形AOC繞點(diǎn)O順時針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)4、如圖,已知是的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長為______.5、如圖,,在射線AC上順次截取,,以為直徑作交射線于、兩點(diǎn),則線段的長是__________cm.6、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.7、如圖,在中,點(diǎn)是的中點(diǎn),連接交弦于點(diǎn),若,,則的長是______.8、一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.9、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.10、如圖,AB為圓O的切線,點(diǎn)A為切點(diǎn),OB交圓O于點(diǎn)C,點(diǎn)D在圓O上,連接AD、CD、OA,若∠ADC=25°,則∠B的度數(shù)為____.三、解答題(5小題,每小題6分,共計30分)1、等邊三角形的邊長為1厘米,面積為0.43平方厘米.以點(diǎn)為圓心,長為半徑在三角形外畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形.(1)求所得的圖形的周長;(結(jié)果保留)(2)照此規(guī)律畫至第十個扇形,求所圍成的圖形的面積以及所畫出的所有弧長的和.(結(jié)果保留)2、如圖,內(nèi)接于,,,則的直徑等于多少?3、用反證法證明:一條線段只有一個中點(diǎn).4、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).5、在下列正多邊形中,是中心,定義:為相應(yīng)正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點(diǎn)逆時針旋轉(zhuǎn)角度得.(1)若線段與線段相交點(diǎn),則:圖1中的取值范圍是________;圖3中的取值范圍是________;(2)在圖1中,求證(3)在圖2中,正方形邊長為4,,邊上的一點(diǎn)旋轉(zhuǎn)后的對應(yīng)點(diǎn)為,若有最小值時,求出該最小值及此時的長度;(4)如圖3,當(dāng)時,直接寫出的值.-參考答案-一、單選題1、C【解析】【分析】根據(jù)內(nèi)切得出圓A的半徑,再判斷點(diǎn)D、點(diǎn)E到圓心的距離即可【詳解】∵圓A與圓B內(nèi)切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點(diǎn)D在圓A內(nèi)在Rt△ABC中,∴點(diǎn)C在圓A上故選:C【考點(diǎn)】本題考查點(diǎn)與圓的位置關(guān)系、圓與圓的位置關(guān)系、勾股定理,熟練掌握點(diǎn)與圓的位置關(guān)系是關(guān)鍵2、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點(diǎn)】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.3、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點(diǎn)】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.4、A【解析】【分析】連接DF,EF,過點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點(diǎn)F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點(diǎn)G是DE的中點(diǎn),∴AG=DG=EG又∵AG=FG∴點(diǎn)A,D,F(xiàn),E四點(diǎn)共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點(diǎn)是BC的中點(diǎn),∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點(diǎn)】本題考查直徑所對的圓周角是90°,四點(diǎn)共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計算是解題關(guān)鍵.5、C【解析】【分析】設(shè)圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設(shè)圓錐母線長為R,由題意得:∵圓錐的側(cè)面展開圖是一個半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側(cè)面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點(diǎn)】本題主要考查圓錐側(cè)面展開圖及弧長計算公式,熟練掌握圓錐的特征及弧長計算公式是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點(diǎn)為△ABC的內(nèi)心故答案為:C.【考點(diǎn)】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.7、A【解析】【分析】設(shè)扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設(shè)扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點(diǎn)】本題主要考查扇形弧長公式.8、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.9、A【解析】【分析】由∠AEC=90°知,點(diǎn)E在以AC為直徑的⊙M的上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時,即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點(diǎn)、可含點(diǎn),最短時,即為連接與的交點(diǎn)(圖中點(diǎn)點(diǎn)),在中,,,則.,長度的最小值,故選:.【考點(diǎn)】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識點(diǎn),難度偏大,解題時,注意輔助線的作法.10、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.二、填空題1、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.2、【解析】【分析】連接OA,OB,證明△AOB是等邊三角形,繼而求得AB的長,然后利用弧長公式可以計算出的長度,再根據(jù)扇形圍成圓錐底面圓的周長等于扇形的弧長即可作答.【詳解】連接OA,OB,則∠BAO=∠BAC==60°,又∵OA=OB,∴△AOB是等邊三角形,∴AB=OA=1,∵∠BAC=120°,∴的長為:,設(shè)圓錐底面圓的半徑為r故答案為.【考點(diǎn)】本題主要考查了弧長公式以及扇形弧長與底面圓周長相等的知識點(diǎn),借助等量關(guān)系即可算出底面圓的半徑.3、5π【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.4、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識點(diǎn),本題的關(guān)鍵是求出∠COB=60°.5、6【解析】【分析】過點(diǎn)作于,連,根據(jù)垂徑定理得,在中,,,利用含30度的直角三角形三邊的關(guān)系可得到,再利用勾股定理計算出,由得到答案.【詳解】解:過點(diǎn)作于,連,如圖則,在中,,,則,在中,,,則,則.故答案為6.【考點(diǎn)】本題考查了垂徑定理,含30度的直角三角形三邊的關(guān)系以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.6、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.7、8.【解析】【分析】連結(jié)OA,OB,點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點(diǎn)】本題考查垂徑定理的推論,勾股定理,線段中點(diǎn)定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點(diǎn)定義是解題關(guān)鍵.8、150【解析】【分析】根據(jù)弧長公式計算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點(diǎn)】本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.9、

【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點(diǎn)】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.10、40°【解析】【分析】根據(jù)圓周角和圓心角的關(guān)系,可以得到∠AOC的度數(shù),然后根據(jù)AB為⊙O的切線和直角三角形的兩個銳角互余,即可求得∠B的度數(shù).【詳解】解:∵∠ADC=25°,∴∠AOC=50°,∵AB為⊙O的切線,點(diǎn)A為切點(diǎn),∴∠OAB=90°,∴∠B=90°-∠AOC=90°-50°=40°,故答案為:40°.【考點(diǎn)】本題考查切線的性質(zhì)、圓周角定理、直角三角形的性質(zhì),利用數(shù)形結(jié)合的思想解答問題是解答本題的關(guān)鍵.三、解答題1、(1)厘米;(2)平方厘米,厘米.【解析】【分析】(1)本題按照弧長公式依次求解扇形ADC、扇形DBE、扇形ECF的弧長,最后對應(yīng)相加即可.(2)本題利用扇形面積公式求解第一個扇形至第三個扇形的面積,結(jié)合第一問各扇形弧長結(jié)果總結(jié)規(guī)律,得出普遍規(guī)律后將數(shù)值代入公式,累次相加即可求解.【詳解】(1)由已知得:扇形ADC的半徑長為1,圓心角為120°;扇形DBE半徑長為2,圓心角為120°;扇形ECF半徑長為3,圓心角為120°.故據(jù)弧長公式可得:扇形ADC弧長;扇形DBE弧長;扇形ECF弧長;故圖形CDEFC的周長為:.(2)根據(jù)扇形面積公式可得:第一個扇形的面積為,由上一問可知其弧長為;第二個扇形的面積為,弧長為;第三個扇形的面積為,弧長為;總結(jié)規(guī)律可得第個扇形面積為,第個扇形弧長為.故畫至第十個圖形所圍成的圖形面積和為:;所有的弧長和為:.【考點(diǎn)】本題考查扇形與弧長公式的延伸,出題角度較為新穎,解題關(guān)鍵在于需要根據(jù)圖形特點(diǎn)總結(jié)規(guī)律,其次注意計算即可.2、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點(diǎn)】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理,掌握這些知識點(diǎn)是解題關(guān)鍵.3、見解析.【解析】【分析】首先假設(shè)結(jié)論的反面:一條線段可以有多個中點(diǎn),不妨設(shè)有兩個,根據(jù)中點(diǎn)的定義得出矛盾,即可證得.【詳解】解:已知:一條線段,點(diǎn)M為的中點(diǎn).求證:線段只有一個中點(diǎn)M,證明:假設(shè)線段有兩個中點(diǎn),分別為點(diǎn)M、N,不妨設(shè)點(diǎn)M在點(diǎn)N的左邊,則,又∵,這與矛盾,∴假設(shè)不成立,線段只有一個中點(diǎn)M.∴一條線段只有一個中點(diǎn).【考點(diǎn)】本題主要考查了反證法,正確理解反證法的基本思想是解題的關(guān)鍵.4、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論