版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
數(shù)學蘇教七年級下冊期末解答題壓軸專題資料真題(比較難)及答案解析一、解答題1.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點O,點A是平面內(nèi)一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.2.閱讀下列材料并解答問題:在一個三角形中,如果一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內(nèi)角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內(nèi)角中一定有一個內(nèi)角的度數(shù)是另一個內(nèi)角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).3.在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.(1)如圖①,當AE⊥BC時,寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.4.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.5.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設(shè).(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側(cè)時,其他條件不變,請猜想和的數(shù)量關(guān)系,并說明理由;(3)當點運動到點的右側(cè)時,其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)6.如圖1,將一副三角板與三角板擺放在一起;如圖2,固定三角板,將三角板繞點A按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角().(1)當________度時,;當________度時;(2)當?shù)囊贿吪c的某一邊平行(不共線)時,直接寫出旋轉(zhuǎn)角的所有可能的度數(shù);(3)當,連接,利用圖4探究的度數(shù)是否發(fā)生變化,并給出你的證明.7.(概念認識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°(),∠B=54°,直接寫出∠BPC的度數(shù).(用含m的代數(shù)式表示)8.直線與直線垂直相交于O,點A在射線上運動,點B在射線上運動.(1)如圖1,已知、分別是和角的平分線,點A、B在運動的過程中,的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;(2)如圖2,延長至D,己知、的角平分線與的角平分線及其延長線相交于E、F.①求的度數(shù).②在中,如果有一個角是另一個角的3倍,試求的度數(shù).9.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關(guān)系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.10.已知:射線(1)如圖1,的角平分線交射線與點,若,求的度數(shù).(2)如圖2,若點在射線上,平分交于點,平分交于點,,求的度數(shù).(3)如圖3,若,依次作出的角平分線,的角平分線,的角平分線,的角平分線,其中點,,,,,都在射線上,直接寫出的度數(shù).【參考答案】一、解答題1.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.2.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢想三角形”的定義判斷即可;(3)根據(jù)同角的補角相等得到∠EFC=∠ADC,根據(jù)平行線的性質(zhì)得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢想三角形”的定義求解即可.【詳解】解:當108°的角是另一個內(nèi)角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當180°﹣108°=72°的角是另一個內(nèi)角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內(nèi)角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點睛】本題考查的是三角形內(nèi)角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關(guān)鍵.3.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計算即可得∠C的度數(shù),進而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當∠FDE=∠DFE時,,解得:;當∠FDE=∠E時,,解得:(因為0<x≤45,故舍去);當∠DFE=∠E時,,解得:(因為0<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個角相等.且.【點睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運用所學知識.4.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.5.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.6.(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當時,,則可求得旋轉(zhuǎn)角解析:(1)105,15;(2)旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當時,,則可求得旋轉(zhuǎn)角度;當∥BC時,,則可求得旋轉(zhuǎn)角度;(2)分五種情況考慮:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分別求出旋轉(zhuǎn)角;(3)設(shè)BD分別交、于點M、N,利用三角形的內(nèi)外角的相等關(guān)系分別得出:及,由的內(nèi)角和為180°,即可得出結(jié)論.【詳解】(1)三角板ADE順時針旋轉(zhuǎn)后的三角板為,當時,如圖,∵,∠EAD=45°∴即旋轉(zhuǎn)角當時,如圖,則∴=45°-30°=15°即旋轉(zhuǎn)角°故答案為:105,15(2)當?shù)囊贿吪c的某一邊平行(不共線)時,有五種情況當AD∥BC時,由(1)知旋轉(zhuǎn)角為15°;如圖(1),當DE∥AB時,旋轉(zhuǎn)角為45°;當DE∥BC時,由AD⊥DE,則有AD⊥BC,此時由(1)知,旋轉(zhuǎn)角為105°;如圖(2),當DE∥AC時,則旋轉(zhuǎn)角為135°;如圖(3),當AE∥BC時,則旋轉(zhuǎn)角為150°;所以旋轉(zhuǎn)角的所有可能的度數(shù)是:15°,45°,105°,135°,150°(3)當,,保持不變;理由如下:設(shè)BD分別交、于點M、N,如圖在中,,,【點睛】本題考查了圖形旋轉(zhuǎn)的性質(zhì),三角形內(nèi)角和定理,三角形的外角與不相鄰的兩個內(nèi)角的相等關(guān)系等知識,注意旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向和旋轉(zhuǎn)角度.7.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當BD是“鄰AB三分線”時,;當BD是“鄰BC三分線”時,;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線和鄰BC三分線,∴,∴,∴,在△ABC中,,∴.(3)分4種情況進行畫圖計算:情況一:如圖①,當BP和CP分別是“鄰AB三分線”、“鄰AC三分線”時,∴;情況二:如圖②,當BP和CP分別是“鄰BC三分線”、“鄰CD三分線”時,∴;情況三:如圖③,當BP和CP分別是“鄰BC三分線”、“鄰AC三分線”時,∴;情況四:如圖④,當BP和CP分別是“鄰AB三分線”、“鄰CD三分線”時,;綜上所述:的度數(shù)為:或或或.【點睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握并靈活運用三角形的外角性質(zhì),注意要分情況討論.8.(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB解析:(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)①由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAD的角平分線可知∠EAF=90°;②在△AEF中,由一個角是另一個角的3倍分四種情況進行分類討論.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AC、BC分別是∠BAO和∠ABO角的平分線,∴∠BAC=∠OAB,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠OAB+∠ABO)=×90°=45°,∴∠ACB=135°;(2)①∵AE、AF分別是∠BAO和∠OAD的角平分線,∴∠EAO=∠BAO,∠FAO=∠DAO,∴∠EAF=(∠BAO+∠DAO)=×180°=90°.故答案為:90;②∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一個角是另一個角的3倍,故分四種情況討論:①∠EAF=3∠E,∠E=30°,則∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO為60°或45°.【點睛】本題考查的是三角形內(nèi)角和定理、三角形外角性質(zhì)以及角平分線的定義的運用,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.9.(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出∠EDB+∠FBD=180°,可得結(jié)論;(3)根據(jù)五等分得到∠CDP+∠CBP=36°,連接PC并延長,證明∠DCB=∠DPB+∠CBP+∠CDP,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職糧油檢驗檢測技術(shù)(糧油檢驗基礎(chǔ))試題及答案
- 2025年中職生物(植物生理學基礎(chǔ))試題及答案
- 2025年中職(會計綜合實訓)全盤賬務(wù)處理階段測試試題及答案
- 2025年大學越野滑雪運動與管理(越野滑雪技術(shù))試題及答案
- 2025年大學大四(出版學)出版物編輯出版綜合評估試題及答案
- 2026年人力資源外包(員工派遣管理)試題及答案
- 2025年高職測繪工程技術(shù)(測繪工程實操)試題及答案
- 2025年大學三年級(公共政策)公共政策分析試題及答案
- 2025年高職現(xiàn)代農(nóng)業(yè)技術(shù)(智慧農(nóng)業(yè)設(shè)備應(yīng)用)試題及答案
- 2025年高職醫(yī)學美容技術(shù)(醫(yī)學美容技術(shù))試題及答案
- 2026年南通科技職業(yè)學院高職單招職業(yè)適應(yīng)性測試備考試題含答案解析
- 中遠海運集團筆試題目2026
- 2026年中國熱帶農(nóng)業(yè)科學院橡膠研究所高層次人才引進備考題庫含答案詳解
- 妝造店化妝品管理制度規(guī)范
- 2025-2026學年四年級英語上冊期末試題卷(含聽力音頻)
- 浙江省2026年1月普通高等學校招生全國統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- 2026屆川慶鉆探工程限公司高校畢業(yè)生春季招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 基本農(nóng)田保護施工方案
- 股骨頸骨折患者營養(yǎng)護理
- 二級醫(yī)院醫(yī)療設(shè)備配置標準
- 2026年廣西出版?zhèn)髅郊瘓F有限公司招聘(98人)考試參考題庫及答案解析
評論
0/150
提交評論