版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑2、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o3、下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦4、丁丁和當當用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請你判斷哪個小朋友做成的帽子更高一些()A.丁丁 B.當當 C.一樣高 D.不確定5、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°6、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(
)A. B. C. D.7、已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°8、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.9、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數(shù)為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.010、在⊙O中按如下步驟作圖:(1)作⊙O的直徑AD;(2)以點D為圓心,DO長為半徑畫弧,交⊙O于B,C兩點;(3)連接DB,DC,AB,AC,BC.根據(jù)以上作圖過程及所作圖形,下列四個結論中錯誤的是()A.∠ABD=90° B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、劉徽是我國魏晉時期卓越的數(shù)學家,他在《九章算術》中提出了“割圓術”,利用圓的內(nèi)接正多邊形逐步逼近圓來近似計算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來近似估計的面積,設的半徑為1,則__________.2、如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.3、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.4、如圖:四邊形ABCD內(nèi)接于⊙O,E為BC延長線上一點,若∠A=n°,則∠DCE=_____°.5、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.6、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.7、如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結果保留π).8、在⊙O中,若弦垂直平分半徑,則弦所對的圓周角等于_________°.9、如圖,在中,,,以點為圓心、為半徑的圓交于點,則弧AD的度數(shù)為________度.10、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?2、已知四邊形內(nèi)接于⊙O,,垂足為E,,垂足為F,交于點G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.3、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請直接寫出結果;若不能,請說明理由.4、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長;(2)求⊙O的半徑r.5、如圖,已知等邊△ABC內(nèi)接于☉O,BD為內(nèi)接正十二邊形的一邊,CD=5cm,求☉O的半徑R.-參考答案-一、單選題1、D【解析】【分析】根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選D.【考點】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關鍵.2、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.3、B【解析】【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【考點】本題考查了圓中弦、圓心角、弧度之間的關系,熟練掌握該知識點是本題解題的關鍵.4、B【解析】【分析】由圖形可知,丁丁扇形的弧長大于當當扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當當剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長相等R,設圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當當?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長大于當當扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當當剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長相等R,設圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當當?shù)膆,∴由勾股定理可得當當做成的圓錐形的帽子更高一些.故選:B.【考點】本題考查扇形作圓錐帽子的應用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關系,根據(jù)勾股定理確定出當當?shù)拿弊痈呤墙忸}關鍵.5、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.6、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關鍵在于能夠熟練掌握相關知識進行求解.7、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.8、B【解析】【分析】根據(jù)題意可以求得半徑,進而解答即可.【詳解】因為圓內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點】本題考查正多邊形和圓,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.9、D【解析】【分析】根據(jù)直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數(shù)為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.10、D【解析】【分析】根據(jù)作圖過程可知:AD是⊙O的直徑,=,根據(jù)垂徑定理即可判斷A、B、C正確,再根據(jù)DC=OD,可得AD=2CD,進而可判斷D選項.【詳解】解:根據(jù)作圖過程可知:AD是⊙O的直徑,∴∠ABD=90°,∴A選項正確;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B選項正確;根據(jù)垂徑定理,得AD⊥BC,∴C選項正確;∵DC=OD,∴AD=2CD,∴D選項錯誤.故選:D.【考點】本題考查作圖-復雜作圖、含30度角的直角三角形、垂徑定理、圓周角定理,解決本題的關鍵是熟練掌握相關知識點.二、填空題1、【解析】【分析】如圖,過點A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關鍵.2、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.3、
【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關鍵.4、n【解析】【分析】利用圓內(nèi)接四邊形的對角互補和鄰補角的性質(zhì)求解.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點】本題考查了圓內(nèi)接四邊形的性質(zhì).解決本題的關鍵是掌握:圓內(nèi)接四邊形的對角互補.5、
2米
12.56平方米【解析】【分析】根據(jù)周長公式轉(zhuǎn)化為,將C=12.56代入進行計算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結果.【詳解】因為C=2πr,所以==2,所以r=2(米),因為S=πr2=3.14×22=12.56(平方米).故答案為:2米
12.56平方米.【考點】考查圓的面積和周長與半徑之間的關系,學生必須熟練掌握圓的面積和周長的求解公式,選擇相應的公式進行計算,利用公式是解題的關鍵.6、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關鍵是要熟練掌握圓周角的性質(zhì).7、10π【解析】【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【考點】本題考查了圓錐的計算,解題的關鍵是了解圓錐的底面周長等于展開扇形的弧長.8、120°或60°【解析】【分析】根據(jù)弦垂直平分半徑及OB=OC證明四邊形OBAC是矩形,再根據(jù)OB=OA,OE=求出∠BOE=60°,即可求出答案.【詳解】設弦垂直平分半徑于點E,連接OB、OC、AB、AC,且在優(yōu)弧BC上取點F,連接BF、CF,∴OB=AB,OC=AC,∵OB=OC,∴四邊形OBAC是菱形,∴∠BOC=2∠BOE,∵OB=OA,OE=,∴cos∠BOE=,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=∠BOC=60°,∴弦所對的圓周角為120°或60°,故答案為:120°或60°.【考點】此題考查圓的基本知識點:圓的垂徑定理,同圓的半徑相等的性質(zhì),圓周角定理,菱形的判定定理及性質(zhì)定理,銳角三角函數(shù),熟練掌握圓的各性質(zhì)定理是解題的關鍵.9、【解析】【分析】由三角形內(nèi)角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度數(shù)可求,可解.【詳解】連接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度數(shù)是50度.【考點】本題考查了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.三、解答題1、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關鍵在于能夠熟練掌握切線長定理.2、(1)證明見詳解(2)(3)為定值,【解析】【分析】(1)由,,可證明,由圓周角定理可知,可證明,再借助對頂角相等可知,進而證明,即可推導出;(2)由(1)可知,AC為DG的垂直平分線,即有,連接OA、OB、OC、OD,過點O作,,垂足分別為M、N,利用垂徑定理和圓周角定理推導,,,;再借助,可證明,進而得到,即可證明,即有;在中,利用勾股定理計算OC的長,即可得到⊙O的半徑;(3)過點H作,垂足分別為P、Q,過點D作于點K,由已知條件、三角函數(shù)函數(shù)及含30°角的直角三角形的性質(zhì),先計算出,,再根據(jù),可得出,整理可得.(1)證明:∵,,∴,∴,,∵,∴,∴,∵,∴,∴;(2)解:由(1)可知,,,∴,即AC為DG的垂直平分線,∴,如圖1,連接OA、OB、OC、OD,過點O作,,垂足分別為M、N,則有,,,,,∴,同理,,∵,即,,∵,∴,在和中,,∴,∴,在中,,即圓⊙O的半徑為;(3)為定值,且,證明如下:如圖2,過點H作,垂足分別為P、Q,過點D作于點K,∵,∴,∵,,∴,即,∴,∵,,且,∴,∵,∴在中,,即有,∵,∴,即∴,∴.【考點】本題主要考查了圓周角定理、垂徑定理、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)及利用三角函數(shù)解直角三角形等知識,綜合性較強,解題關鍵是熟練掌握相關知識并能夠綜合運用.3、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(2)我們借助第一題的解答結果,運用等量代換的方法可以求出陰影乙的面積.【詳解】(1)因為OB=20,所以S半圓=×(20÷2)2,=×100,≈157;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦壓觀測工班組建設知識考核試卷含答案
- 高壓試驗工安全專項水平考核試卷含答案
- 醫(yī)藥商品購銷員安全強化考核試卷含答案
- 2025年引導信標機合作協(xié)議書
- 2026年1月24日河北省直機關選調(diào)面試真題及答案解析(上午卷)
- 狙擊槍介紹課件
- 環(huán)境局業(yè)務培訓課件模板
- 燃氣安全隱患排查報告燃氣安全隱患排查整治工作總結
- 物業(yè)公司小區(qū)保潔年度工作總結
- 術中物品清點誤差時的應急預案及處理流程
- 中遠海運集團筆試題目2026
- 2026年中國熱帶農(nóng)業(yè)科學院橡膠研究所高層次人才引進備考題庫含答案詳解
- 妝造店化妝品管理制度規(guī)范
- 2025-2026學年四年級英語上冊期末試題卷(含聽力音頻)
- 浙江省2026年1月普通高等學校招生全國統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- 2026屆川慶鉆探工程限公司高校畢業(yè)生春季招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 2023-2024學年貴州省遵義市小學語文六年級期末評估測試題詳細參考答案解析
- 銷售心理學全集(2022年-2023年)
- 變態(tài)反應課件
- 電力拖動控制線路與技能訓練-教案
- 50年同學聚會邀請函(十二篇)
評論
0/150
提交評論