考點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(含詳細(xì)解析)_第1頁(yè)
考點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(含詳細(xì)解析)_第2頁(yè)
考點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(含詳細(xì)解析)_第3頁(yè)
考點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(含詳細(xì)解析)_第4頁(yè)
考點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(含詳細(xì)解析)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,可知的度數(shù)為()A. B. C. D.2、下列說(shuō)法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.43、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(

)A.24 B.30 C.36 D.424、如圖給出了四組三角形,其中全等的三角形有(

)組.A.1 B.2 C.3 D.45、如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點(diǎn)O到邊AB的距離為(

)A.2cm B.3cm C.4cm D.5cm6、“經(jīng)過(guò)已知角一邊上的一點(diǎn)作“個(gè)角等于已知角”的尺規(guī)作圖過(guò)程如下:已知:如圖(1),∠AOB和OA上一點(diǎn)C.求作:一個(gè)角等于∠AOB,使它的頂點(diǎn)為C,一邊為CA.作法:如圖(2),(1)在0A上取一點(diǎn)D(OD<OC),以點(diǎn)O為圓心,OD長(zhǎng)為半徑畫(huà)弧,交OB于點(diǎn)E;(2)以點(diǎn)C為圓心,OD長(zhǎng)為半徑畫(huà)弧,交CA于點(diǎn)F,以點(diǎn)F為圓心,DE長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C;(3)作射線CC.所以∠CCA就是所求作的角此作圖的依據(jù)中不含有()A.三邊分別相等的兩個(gè)三角形全等 B.全等三角形的對(duì)應(yīng)角相等C.兩直線平行同位角相等 D.兩點(diǎn)確定一條直線7、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過(guò)P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(

)個(gè)A.2 B.3 C.4 D.58、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點(diǎn),D、E、F與O點(diǎn)都不重合,連接ED、EF若添加下列條件中的某一個(gè).就能使DOE△FOE,你認(rèn)為要添加的那個(gè)條件是(

)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE9、下列說(shuō)法正確的是(

)A.形狀相同的兩個(gè)三角形全等 B.面積相等的兩個(gè)三角形全等C.完全重合的兩個(gè)三角形全等 D.所有的等邊三角形全等10、如圖,在中,,,,平分交于D點(diǎn),E,F(xiàn)分別是,上的動(dòng)點(diǎn),則的最小值為(

)A. B. C.3 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、我們定義:一個(gè)三角形最小內(nèi)角的角平分線將這個(gè)三角形分割得到的兩個(gè)三角形它們的面積之比稱為“最小角割比Ω”(),那么三邊長(zhǎng)分別為7,24,25的三角形的最小角割比Ω是______.2、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點(diǎn)P從A點(diǎn)出發(fā)沿A—C—B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B—C—A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以2和6的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點(diǎn)P的運(yùn)動(dòng)時(shí)間為_(kāi)______.3、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.4、如圖所示,中,.直線l經(jīng)過(guò)點(diǎn)A,過(guò)點(diǎn)B作于點(diǎn)E,過(guò)點(diǎn)C作于點(diǎn)F.若,則__________.5、如圖,已知∠1=∠2、AD=AB,若再增加一個(gè)條件不一定能使結(jié)論成立,則這個(gè)條件是_____.6、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.7、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.8、在ABC中,AB=AC,點(diǎn)D在BC上(不與點(diǎn)B,C重合).只需添加一個(gè)條件即可證明ABD≌ACD,這個(gè)條件可以是________(寫(xiě)出一個(gè)即可)9、如圖是由九個(gè)邊長(zhǎng)為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為_(kāi)_____.10、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過(guò)D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,點(diǎn)E在邊AC上,已知AB=DC,∠A=∠D,BC∥DE,求證:DE=AE+BC.2、如圖,已知,.求證:.3、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點(diǎn).4、已知:如圖,,,.求證:.5、如圖所示,在三角形ABC中,,,作的平分線與AC交于點(diǎn)E,求證:.-參考答案-一、單選題1、C【解析】【分析】利用等腰三角形的性質(zhì)和基本作圖得到,則平分,利用和三角形內(nèi)角和計(jì)算出,從而得到的度數(shù).【詳解】由作法得,∵,∴平分,,∵,∴.故選C.【考點(diǎn)】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過(guò)一點(diǎn)作已知直線的垂線).也考查了等腰三角形的性質(zhì).2、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.3、B【解析】【分析】過(guò)D作DE⊥AB交BA的延長(zhǎng)線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過(guò)D作DE⊥AB交BA的延長(zhǎng)線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點(diǎn)】本題考查了角平分線的性質(zhì),三角形的面積的計(jì)算,正確的作出輔助線是解題的關(guān)鍵.4、D【解析】【詳解】分析:根據(jù)全等三角形的判定解答即可.詳解:圖A可以利用AAS證明全等,圖B可以利用SAS證明全等,圖C可以利用SAS證明全等,圖D可以利用ASA證明全等..其中全等的三角形有4組,故選D.點(diǎn)睛:此題考查全等三角形的判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較典型,難度適中.5、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到OE=OF=OD,設(shè)OE=x,然后利用三角形面積公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到關(guān)于x的方程,從而可得到OF的長(zhǎng)度.【詳解】解:∵點(diǎn)O為△ABC的三條角平分線的交點(diǎn),∴OE=OF=OD,設(shè)OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴點(diǎn)O到AB的距離等于2.故選:A.【考點(diǎn)】本題考查了角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等,面積法的應(yīng)用是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)題意知,作圖依據(jù)有全等三角形的判定定理SSS,全等三角形的性質(zhì)和兩點(diǎn)確定一條直線,直接判斷即可.【詳解】解:由題意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正確;結(jié)合該全等三角形的性質(zhì)對(duì)應(yīng)角相等,故B正確;作射線CG,利用兩點(diǎn)確定一條直線,故D正確;故選:C.【考點(diǎn)】本題考查作一個(gè)角等于已知角和三角形全等的判定與性質(zhì),解題關(guān)鍵是明確作圖原理,準(zhǔn)確進(jìn)行判斷.7、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問(wèn)題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問(wèn)題.③錯(cuò)誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯(cuò)誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問(wèn)題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個(gè)顯然與條件矛盾,故③錯(cuò)誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考??碱}型.8、D【解析】【分析】根據(jù)OB平分∠AOC得∠AOB=∠BOC,又因?yàn)镺E是公共邊,根據(jù)全等三角形的判斷即可得出結(jié)果.【詳解】解:∵OB平分∠AOC∴∠AOB=∠BOC當(dāng)△DOE≌△FOE時(shí),可得以下結(jié)論:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD與OE不是△DOE≌△FOE的對(duì)應(yīng)邊,A不正確;B答案中OE與OF不是△DOE≌△FOE的對(duì)應(yīng)邊,B不正確;C答案中,∠ODE與∠OED不是△DOE≌△FOE的對(duì)應(yīng)角,C不正確;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正確.故選:D.【考點(diǎn)】本題考查三角形全等的判斷,理解全等圖形中邊和角的對(duì)應(yīng)關(guān)系是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)全等形的概念:能夠完全重合的兩個(gè)圖形叫做全等形,以及全等三角形的判定定理可得答案.【詳解】解:A、形狀相同的兩個(gè)三角形全等,說(shuō)法錯(cuò)誤,應(yīng)該是形狀相同且大小也相同的兩個(gè)三角形全等;B、面積相等的兩個(gè)三角形全等,說(shuō)法錯(cuò)誤;C、完全重合的兩個(gè)三角形全等,說(shuō)法正確;D、所有的等邊三角形全等,說(shuō)法錯(cuò)誤;故選:C.【考點(diǎn)】此題主要考查了全等圖形,關(guān)鍵是掌握全等形的概念.10、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點(diǎn)C到AB的垂線段長(zhǎng)度.【詳解】在AB上取一點(diǎn)G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點(diǎn)共線時(shí),符合要求,此時(shí),作CH⊥AB于H點(diǎn),則CH的長(zhǎng)即為CE+EG的最小值,此時(shí),,∴CH==,即:CE+EF的最小值為,故選:D.【考點(diǎn)】本題考查了角平分線構(gòu)造全等以及線段和差極值問(wèn)題,靈活構(gòu)造輔助線是解題關(guān)鍵.二、填空題1、.【解析】【分析】根據(jù)題意作出圖形,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)三角形的面積和最小角割比Ω的定義計(jì)算即可.【詳解】解:如圖示,,,,則,根據(jù)題意,作的角平分線交于點(diǎn),過(guò)點(diǎn),作交于點(diǎn),過(guò)點(diǎn),作交于點(diǎn),則∵,,則()故答案是:.【考點(diǎn)】本題考查了三角形角平分線的性質(zhì)和三角形的面積計(jì)算,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.2、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時(shí)P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時(shí),此時(shí)不存在,④當(dāng)Q到A點(diǎn),與A重合,P在BC上時(shí).【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時(shí)P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時(shí),此時(shí)不存在;理由是:28÷6=,12÷2=6,即Q在AC上運(yùn)動(dòng)時(shí),P點(diǎn)也在AC上運(yùn)動(dòng);④當(dāng)Q到A點(diǎn)(和A重合),P在BC上時(shí),∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點(diǎn)P運(yùn)動(dòng)1或3.5或12時(shí),△PEC與△QFC全等.【考點(diǎn)】本題主要考查對(duì)全等三角形的性質(zhì),解一元一次方程等知識(shí)點(diǎn)的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.3、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點(diǎn)】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.4、7【解析】【分析】根據(jù)全等三角形來(lái)實(shí)現(xiàn)相等線段之間的關(guān)系,從而進(jìn)行計(jì)算,即可得到答案;【詳解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵,∴;故答案為:7.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),余角的性質(zhì),解題的關(guān)鍵是熟練掌握所學(xué)的知識(shí),正確的證明三角形全等.5、DE=BC【解析】【分析】根據(jù)題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點(diǎn)】本題考查了三角形全等的判定定理,熟記并靈活運(yùn)用各種判定方法是解題關(guān)鍵.6、或【解析】【分析】延長(zhǎng)AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長(zhǎng).【詳解】解:如圖,延長(zhǎng)AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.7、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對(duì)應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.8、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時(shí)利用邊角邊判定:或可以添加:此時(shí)利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點(diǎn)】本題考查的是三角形全等的判定,屬開(kāi)放性題,掌握三角形全等的判定是解題的關(guān)鍵.9、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點(diǎn)】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對(duì)應(yīng)角相等即可求解.10、4.【解析】【分析】過(guò)點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過(guò)點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論