難點詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評練習(xí)題_第1頁
難點詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評練習(xí)題_第2頁
難點詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評練習(xí)題_第3頁
難點詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評練習(xí)題_第4頁
難點詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評練習(xí)題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°2、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.3、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.135、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.2、如圖,將矩形ABCD折疊,使點C與點A重合,折痕為EF.若AF=5,BF=3,則AC的長為_____.3、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.4、如圖,在正方形ABCD中,AB=2,取AD的中點E,連接EB,延長DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點H在線段AB上,則的值是_____.5、已知一直角三角形的兩直角邊長分別為6和8,則斜邊上中線的長度是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E,CD=5,DB=13,求BE的長.

2、如圖,?ABCD的對角線AC,BD相交于點O,點E,點F在線段BD上,且DE=BF.求證:AE∥CF.3、在△ABC中,AB=AC=x,BC=12,點D,E分別為BC,AC的中點,線段BE的垂直平分線交邊BC于點F,(1)當(dāng)x=10時,求線段AD的長.(2)x取何值時,點F與點D重合.(3)當(dāng)DF=1時,求x2的值.4、(閱讀材料)材料一:我們在小學(xué)學(xué)習(xí)過正方形,知道:正方形的四條邊都相等,四個角都是直角;材料二:如圖1,由一個等腰直角三角形和一個正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進行證明;(3)設(shè)圖中兩個小正方形的面積分別為S1和S2,若,求S1和S2的值.5、如圖,已知矩形中,點,分別是,上的點,,且.(1)求證:;(2)若,求:的值.-參考答案-一、單選題1、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).2、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.3、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質(zhì),勾股定理,準(zhǔn)確計算是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.5、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當(dāng)∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關(guān)鍵.二、填空題1、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.2、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點C與點A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).3、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.4、【解析】【分析】設(shè),由正方形的性質(zhì)和勾股定理求出的長,可得的長,再求出的長,得出的長,進而可得結(jié)果.【詳解】解:設(shè),四邊形為正方形,,,點為的中點,,,,,四邊形為正方形,,,故答案為:.【點睛】本題考查了正方形的性質(zhì)以及勾股定理,解題的關(guān)鍵是熟練掌握正方形的性質(zhì),由勾股定理求出的長.5、5【解析】【分析】直角三角形中,斜邊長為斜邊中線長的2倍,所以求斜邊上中線的長求斜邊長即可.【詳解】解:在直角三角形中,兩直角邊長分別為6和8,則斜邊長==10,∴斜邊中線長為×10=5,故答案為5.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長是解題的關(guān)鍵.三、解答題1、【分析】由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE,依據(jù)勾股定理求得BC的長,由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長,從而得到BE的長.【詳解】解:∵四邊形ABCD為矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性質(zhì)可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE與△BEF中,∴△DCE≌△BFE.在Rt△BDC中,由勾股定理得:BC=.∵△DCE≌△BFE,∴BE=DE.設(shè)BE=DE=x,則EC=12?x.在Rt△CDE中,CE2+CD2=DE2,即(12?x)2+52=x2.解得:x=.∴BE=.【點睛】本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用、矩形的性質(zhì),依據(jù)勾股定理列出關(guān)于x的方程是解題的關(guān)鍵.2、見解析【分析】首先根據(jù)平行四邊形的性質(zhì)推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結(jié)論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點睛】本題考查平行四邊形的性質(zhì),以及全等三角形的判定與性質(zhì)等,掌握平行四邊形的基本性質(zhì),準(zhǔn)確證明全等三角形并利用其性質(zhì)是解題關(guān)鍵.3、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問題.

(2)如圖2中,當(dāng)點F與D重合時,連接DE.求出此時x的值即可判斷.

(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)如圖1中,∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD===8.(2)如圖2中,當(dāng)點F與D重合時,連接DE.∵OF垂直平分線段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,當(dāng)x=12時,點F與點D重合.(3)①當(dāng)點F在點D左側(cè)時,作EG⊥BC于G,連接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分線段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,F(xiàn)G=4,∴EG==3,在Rt△DEG中,DE==3,∵AC=2DE,∴AC=6,∴x2=AC2=72.②當(dāng)點F在點D右側(cè)時,作EG⊥BC于G,連接EF,DE.易知BF=EF=7,F(xiàn)G=2,EG===3,∴DE==3,∴AC=2DE=6,∴x2=AC2=216.【點睛】本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),線段的垂直平分線的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,學(xué)會用分類討論的思想思考問題.4、(1);;;(2)證明;證明見解析;(3),【分析】(1)根據(jù)圖形可得出三對全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個面積相等的等腰直角三角形,即可得出;連接HJ,KI,過點H作HM⊥AD于點M,過點I作IN⊥CD于點N,則被分為9個面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個面積相等的等腰直角三角形,.∴連接H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論