難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評試卷(含答案詳解)_第1頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評試卷(含答案詳解)_第2頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評試卷(含答案詳解)_第3頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評試卷(含答案詳解)_第4頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評試卷(含答案詳解)_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,菱形ABCD的對角線AC、BD的長分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長度為()A.3 B.4 C.2.5 D.52、順次連接矩形各邊中點(diǎn)得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形3、如圖,在長方形ABCD中,AB=10cm,點(diǎn)E在線段AD上,且AE=6cm,動點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動,同時點(diǎn)Q在線段BC上.以vcm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,當(dāng)△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或4、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE5、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.546、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o7、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°8、平行四邊形中,,則的度數(shù)是()A. B. C. D.9、如圖,將矩形ABCD沿對角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.510、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個動點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.10第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.2、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____3、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長為___.4、正方形的一條對角線長為4,則這個正方形面積是_________.5、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.6、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長為__________.7、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點(diǎn)沿墻往下滑動到O點(diǎn)的過程中,正方形的中心點(diǎn)M到O的最小值是______.8、如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動,連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動的路程是2,其中正確結(jié)論的序號為_____.9、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線BD上有一動點(diǎn)K,則KA+KE的最小值為_____________.10、正方形的對角線長為cm,則它的周長為__________cm.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點(diǎn)D作AD∥BC,使AD=BC,在AD上取一點(diǎn)E,連結(jié)CE,點(diǎn)B關(guān)于CE的對稱點(diǎn)為B1,連結(jié)B1D,并延長B1D交BA的延長線于點(diǎn)F,延長CE交B1F于點(diǎn)G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點(diǎn),使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)2、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點(diǎn)A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關(guān)系并說明理由.3、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當(dāng)AC=BD時,四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對角線相等才能判定它是正五邊形?請說明理由.4、如圖,將直角三角形分割成一個正方形和兩對全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請你根據(jù)小穎的思路,完成她的探究過程.(2)請你結(jié)合探究和小穎的解答過程驗(yàn)證勾股定理.

5、如圖,在平面直角坐標(biāo)系中,ΔABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點(diǎn)D的痕跡).-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長,進(jìn)而根據(jù)三角形中位線定理求得的長度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長是解題的關(guān)鍵.2、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質(zhì)證明,再證明四邊形是平行四邊形,再證明從而可得結(jié)論.【詳解】解:如圖,矩形中,分別為四邊的中點(diǎn),,四邊形是平行四邊形,四邊形是菱形.故選C.【點(diǎn)睛】本題考查的是矩形的性質(zhì),菱形的判定,三角形的中位線的性質(zhì),熟練的運(yùn)用三角形的中位線的性質(zhì)解決中點(diǎn)四邊形問題是解本題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意可知當(dāng)△EAP與△PBQ全等時,有兩種情況:①當(dāng)EA=PB時,△APE≌△BQP,②當(dāng)AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關(guān)系求解即可.【詳解】解:當(dāng)△EAP與△PBQ全等時,有兩種情況:①當(dāng)EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動,∴點(diǎn)P和點(diǎn)Q的運(yùn)動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當(dāng)AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點(diǎn)睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點(diǎn),注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.4、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識,判定四邊形BCED為平行四邊形是解題的關(guān)鍵.5、C【解析】【分析】過點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.6、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點(diǎn)睛】考查菱形的邊的性質(zhì),同時綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).7、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).8、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).9、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關(guān)鍵.10、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時,OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.二、填空題1、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.2、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點(diǎn)睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.3、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運(yùn)用了方程思想,關(guān)鍵是證明三角形全等.4、8【解析】【分析】正方形邊長相等設(shè)為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對角線為故答案為:.【點(diǎn)睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.5、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動點(diǎn),當(dāng)DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.6、##【解析】【分析】由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進(jìn)一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對稱的性質(zhì).7、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長,然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時,即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識,正確作出輔助線是解答本題的關(guān)鍵.8、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動時,點(diǎn)E從點(diǎn)O沿線段運(yùn)動到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動時,點(diǎn)E從點(diǎn)O沿線段運(yùn)動到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.9、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.10、16【解析】【分析】根據(jù)正方形對角線的長,可將正方形的邊長求出,進(jìn)而可將正方形的周長求出.【詳解】解:設(shè)正方形的邊長為x,∵正方形的對角線長為cm,∴,解得:x=4,∴正方形的邊長為:4(cm),∴正方形的周長為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).三、解答題1、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點(diǎn)M,交CD于點(diǎn)Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點(diǎn)N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計(jì)算即可;(3)根據(jù)點(diǎn)G的位置不同分4種情況進(jìn)行討論計(jì)算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點(diǎn)M,交CD于點(diǎn)Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點(diǎn)B1與點(diǎn)B關(guān)于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設(shè)BG交AD于點(diǎn)N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=CG=6,則∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如圖3,HG=CG=6,且點(diǎn)H與點(diǎn)B在直線FB1的同側(cè),∴BH=HG﹣BG=6﹣4;如圖4,CH=GH,則∠HCG=∠HGC=45°,∴∠CHG=90°,∴CH2+GH2=CG2,∴2GH2=(6)2,∴GH=3,∴BH=BG﹣GH=4﹣3=;如圖5,HG=CG=6,且點(diǎn)H與點(diǎn)B在直線FB1的異側(cè),∴BH=HG+BG=6+4,綜上所述,BH的長為2或6﹣4或或6+4,故答案為:2或6﹣4或或6+4.【點(diǎn)睛】本題主要考查了全等三角形的綜合,勾股定理,垂直平分線的判定與性質(zhì),正方形的性質(zhì),準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.2、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長BA與CD的延長線交于點(diǎn)G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根據(jù)BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,從而得到AF=HF,則DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【詳解】解:(1)如圖所示,延長BA與CD的延長線交于點(diǎn)G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分線,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如圖所示,連接AD,取BE中點(diǎn)H,連接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H為BE中點(diǎn),D為CG中點(diǎn),∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【點(diǎn)睛】.本題主要考查了全等三角形的性質(zhì)與判定,角平分線的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、(1)是;(2)見解析;(3)至少需要3條對角線相等才能判定它是正五邊形,見解析【分析】(1)根據(jù)對角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論