版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》難點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.2、如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長(zhǎng)為()A. B. C.4.5 D.4.33、如圖,在長(zhǎng)方形ABCD中,AB=10cm,點(diǎn)E在線段AD上,且AE=6cm,動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BC上.以vcm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)△EAP與△PBQ全等時(shí),v的值為()A.2 B.4 C.4或 D.2或4、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm5、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長(zhǎng)線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長(zhǎng)為()A.7 B. C.8 D.96、如圖,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=,則點(diǎn)C的坐標(biāo)為()A.(,1) B.(1,1) C.(1,) D.(+1,1)7、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)為F,連結(jié)EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過(guò)點(diǎn)E作⊥DE交DG的延長(zhǎng)線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.28、如圖,OA⊥OB,OB=4,P是射線OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長(zhǎng)度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變9、如圖,菱形ABCD的邊長(zhǎng)為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點(diǎn)E,則點(diǎn)E到AC的距離為()A.1 B. C..2 D.210、如圖,DE是ABC的中位線,點(diǎn)F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長(zhǎng)為()A.2.5 B.1.5 C.4 D.5第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長(zhǎng)的最小值為_(kāi)_______.2、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動(dòng),以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動(dòng)過(guò)程中,CE的最小值為_(kāi)__.3、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長(zhǎng)為_(kāi)__________.4、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對(duì)折后展開(kāi)得到折痕EF.點(diǎn)P為BC邊上任意一點(diǎn),若將紙片沿著DP折疊,使點(diǎn)C恰好落在線段EF的三等分點(diǎn)上,則BC的長(zhǎng)等于_________cm.5、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____6、在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=6,EF=2,則BC的長(zhǎng)為_(kāi)____.7、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長(zhǎng)為_(kāi)____.8、如圖,在直角三角形ABC中,∠B=90°,點(diǎn)D是AC邊上的一點(diǎn),連接BD,把△CBD沿著B(niǎo)D翻折,點(diǎn)C落在AB邊上的點(diǎn)E處,得到△EBD,連接CE交BD于點(diǎn)F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長(zhǎng)為_(kāi)___________9、如圖,正方形ABCD中,BD為對(duì)角線,且BE為∠ABD的角平分線,并交CD延長(zhǎng)線于點(diǎn)E,則∠E=______°.10、如圖,正方形ABCD的邊長(zhǎng)為做正方形,使A,B,C,D是正方形各邊的中點(diǎn);做正方形,使是正方形各邊的中點(diǎn)……以此類推,則正方形的邊長(zhǎng)為_(kāi)_________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.(1)在圖1中,畫一個(gè)三邊長(zhǎng)都是有理數(shù)的直角三角形;(2)在圖2中,畫一個(gè)以BC為斜邊的直角三角形,使它們的三邊長(zhǎng)都是無(wú)理數(shù)且都不相等;(3)在圖3中,畫一個(gè)正方形,使它的面積是10.2、如圖,在矩形中,,,且四邊形是一個(gè)正方形,試問(wèn)點(diǎn)F是的黃金分割點(diǎn)嗎?請(qǐng)說(shuō)明理由.(補(bǔ)全解題過(guò)程)3、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線AC的三等分點(diǎn),連接BE,DF.證明BE=DF.4、在中,,斜邊,過(guò)點(diǎn)作,以AB為邊作菱形ABEF,若,求的面積.5、如圖,已知△ABC中,D是AB上一點(diǎn),AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點(diǎn),求證:BD=2EF.
-參考答案-一、單選題1、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過(guò)面積法得出等量關(guān)系.2、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個(gè)角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長(zhǎng)即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點(diǎn)G為DE的中點(diǎn),∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.3、D【解析】【分析】根據(jù)題意可知當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP,②當(dāng)AP=BP時(shí),△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問(wèn)題的基本數(shù)量關(guān)系求解即可.【詳解】解:當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),∴點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)時(shí)間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當(dāng)AP=BP時(shí),△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點(diǎn)睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長(zhǎng).【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長(zhǎng)是解題的關(guān)鍵.6、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質(zhì)得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點(diǎn)的坐標(biāo).【詳解】:作CD⊥x軸于點(diǎn)D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負(fù)值舍去),則點(diǎn)C的坐標(biāo)為(1,1),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出OD=CD=1是解決問(wèn)題的關(guān)鍵.7、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說(shuō)明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.8、D【解析】【分析】過(guò)點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長(zhǎng)度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.9、C【解析】【分析】根據(jù)題意連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進(jìn)而求出A′E,再利用30度角所對(duì)直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長(zhǎng)為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點(diǎn)睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).10、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進(jìn)而可得答案.【詳解】解:∵D為AB中點(diǎn),∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點(diǎn)睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.二、填空題1、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,求出CA′的最小值即可解決問(wèn)題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長(zhǎng)的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長(zhǎng)的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問(wèn)題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考填空題中的壓軸題.2、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).3、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問(wèn)題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過(guò)點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.4、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點(diǎn)在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點(diǎn)故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問(wèn)題應(yīng)全面,不應(yīng)丟解.5、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.6、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關(guān)系,分別求出、,通過(guò)和是否相交,分兩類情況討論,最后通過(guò)邊之間的關(guān)系,求出的長(zhǎng)即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對(duì)等邊可知:,,情況1:當(dāng)與相交時(shí),如下圖所示:,,,情況2:當(dāng)與不相交時(shí),如下圖所示:,,故答案為:10或14.【點(diǎn)睛】本題主要是考查了平行四邊形的性質(zhì),熟練運(yùn)用平行關(guān)系+角平分線證邊相等,是解決本題的關(guān)鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒(méi)考慮仔細(xì),會(huì)漏掉一種情況.7、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.8、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長(zhǎng)度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點(diǎn),∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進(jìn)行求解.9、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.10、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長(zhǎng),再根據(jù)勾股定理求出和的長(zhǎng),找出規(guī)律,即可得出正方形的邊長(zhǎng).【詳解】解:∵A,B,C,D是正方形各邊的中點(diǎn)∴,∵正方形ABCD的邊長(zhǎng)為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長(zhǎng)為故答案為:.【點(diǎn)睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.三、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)如圖,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如圖,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如圖,,則,∠ABC=90°,即可得到四邊形ABCD是正方形,.【詳解】解:(1)如圖所示,AB=4,BC=3,,∴,∴△ABC是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年獲嘉縣招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年天津中醫(yī)藥大學(xué)馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2024年齊河縣幼兒園教師招教考試備考題庫(kù)及答案解析(必刷)
- 2025年云南體育運(yùn)動(dòng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)帶答案解析
- 2025年蠡縣幼兒園教師招教考試備考題庫(kù)附答案解析(必刷)
- 中牟2022年事業(yè)單位招聘考試模擬試題及答案解析20
- 助留劑環(huán)保知識(shí)培訓(xùn)課件
- 口腔特診科課件
- 制藥企業(yè)培訓(xùn)計(jì)劃
- 口腔技工培訓(xùn)
- 支氣管哮喘防治指南(2024年版)解讀
- 【指導(dǎo)規(guī)則】央企控股上市公司ESG專項(xiàng)報(bào)告參考指標(biāo)體系
- 夫妻債務(wù)約定協(xié)議書(shū)
- 土地管理學(xué)課件
- 村莊規(guī)劃搬遷方案
- 安全文明施工措施方案
- 融資租賃實(shí)際利率計(jì)算表
- 民爆物品倉(cāng)庫(kù)安全操作規(guī)程
- von frey絲K值表完整版
- 勾股定理復(fù)習(xí)導(dǎo)學(xué)案
- 第二章單自由度系統(tǒng)振動(dòng)
評(píng)論
0/150
提交評(píng)論